- 1.1 消息队列
-
1.2 搜索引擎
-
1.2.1 es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)?
-
1.2.2 es 写入数据的工作原理是什么啊?es 查询数据的工作原理是什么啊?底层的 lucene 介绍一下呗?倒排索引了解吗?
-
1.2.3 es 在数据量很大的情况下(数十亿级别)如何提高查询效率啊?
-
1.2.4 es 生产集群的部署架构是什么?每个索引的数据量大概有多少?每个索引大概有多少个分片?
-
1.3.1 在项目中缓存是如何使用的?缓存如果使用不当会造成什么后果?
-
1.3.2 Redis 和 Memcached 有什么区别?Redis 的线程模型是什么?为什么单线程的 Redis 比多线程的 Memcached 效率要高得多?
-
1.3.3 Redis 都有哪些数据类型?分别在哪些场景下使用比较合适?
-
1.3.4 Redis 的过期策略都有哪些?手写一下 LRU 代码实现?
-
1.3.5 如何保证 Redis 高并发、高可用?Redis 的主从复制原理能介绍一下么?Redis 的哨兵原理能介绍一下么?
-
1.3.6 Redis 的持久化有哪几种方式?不同的持久化机制都有什么优缺点?持久化机制具体底层是如何实现的?
-
1.3.7 Redis 集群模式的工作原理能说一下么?在集群模式下,Redis 的 key 是如何寻址的?分布式寻址都有哪些算法?了解一致性 hash 算法吗?如何动态增加和删除一个节点?
-
1.3.8 了解什么是 redis 的雪崩、穿透和击穿?Redis 崩溃之后会怎么样?系统该如何应对这种情况?如何处理 Redis 的穿透?
-
1.3.9 如何保证缓存与数据库的双写一致性?
-
1.3.10 Redis 的并发竞争问题是什么?如何解决这个问题?了解 Redis 事务的 CAS 方案吗?
-
1.3.11 生产环境中的 Redis 是怎么部署的?
-
1.4.1 为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?用过哪些分库分表中间件?不同的分库分表中间件都有什么优点和缺点?你们具体是如何对数据库如何进行垂直拆分或水平拆分的?
-
1.4.2 现在有一个未分库分表的系统,未来要分库分表,如何设计才可以让系统从未分库分表动态切换到分库分表上?
-
1.4.3 如何设计可以动态扩容缩容的分库分表方案?
-
1.4.4 分库分表之后,id 主键如何处理?
-
1.5.1 如何实现 MySQL 的读写分离?MySQL 主从复制原理是啥?如何解决 MySQL 主从同步的延时问题?
-
1.6.1 如何设计一个高并发系统?
-
1.2.1 es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)?
-
2.1 面试连环炮
-
2.2.1 为什么要进行系统拆分?如何进行系统拆分?拆分后不用 Dubbo 可以吗?
-
2.3.1 说一下 Dubbo 的工作原理?注册中心挂了可以继续通信吗?
-
2.3.2 Dubbo 支持哪些序列化协议?说一下 Hessian 的数据结构?PB 知道吗?为什么 PB 的效率是最高的?
-
2.3.3 Dubbo 负载均衡策略和集群容错策略都有哪些?动态代理策略呢?
-
2.3.4 Dubbo 的 spi 思想是什么?
-
2.3.5 如何基于 Dubbo 进行服务治理、服务降级、失败重试以及超时重试?
-
2.3.6 分布式服务接口的幂等性如何设计(比如不能重复扣款)?
-
2.3.7 分布式服务接口请求的顺序性如何保证?
-
2.3.8 如何自己设计一个类似 Dubbo 的 RPC 框架?
-
2.4.1 Zookeeper 都有哪些应用场景?
-
2.4.2 使用 Redis 如何设计分布式锁?使用 Zookeeper 来设计分布式锁可以吗?以上两种分布式锁的实现方式哪种效率比较高?
-
2.5.1 分布式事务了解吗?你们如何解决分布式事务问题的?TCC 如果出现网络连不通怎么办?XA 的一致性如何保证?
-
2.6.1 集群部署时的分布式 Session 如何实现?
-
3.1.1 Hystrix 介绍
-
3.1.2 电商网站详情页系统架构
-
3.1.3 Hystrix 线程池技术实现资源隔离
-
3.1.4 Hystrix 信号量机制实现资源隔离
-
3.1.5 Hystrix 隔离策略细粒度控制
-
3.1.6 深入 Hystrix 执行时内部原理
-
3.1.7 基于 request cache 请求缓存技术优化批量商品数据查询接口
-
3.1.8 基于本地缓存的 fallback 降级机制
-
3.1.9 深入 Hystrix 断路器执行原理
-
3.1.10 深入 Hystrix 线程池隔离与接口限流
-
3.1.11 基于 timeout 机制为服务接口调用超时提供安全保护
-
2.2.1 为什么要进行系统拆分?如何进行系统拆分?拆分后不用 Dubbo 可以吗?
-
4.1 关于微服务架构的描述
深入 Hystrix 线程池隔离与接口限流
前面讲了 Hystrix 的 request cache 请求缓存、fallback 优雅降级、circuit breaker 断路器快速熔断,这一讲,我们来详细说说 Hystrix 的线程池隔离与接口限流。
Hystrix 通过判断线程池或者信号量是否已满,超出容量的请求,直接 Reject 走降级,从而达到限流的作用。
限流是限制对后端的服务的访问量,比如说你对 MySQL、Redis、Zookeeper 以及其它各种后端中间件的资源的访问的限制,其实是为了避免过大的流量直接打死后端的服务。
线程池隔离技术的设计
Hystrix 采用了 Bulkhead Partition 舱壁隔离技术,来将外部依赖进行资源隔离,进而避免任何外部依赖的故障导致本服务崩溃。
舱壁隔离,是说将船体内部空间区隔划分成若干个隔舱,一旦某几个隔舱发生破损进水,水流不会在其间相互流动,如此一来船舶在受损时,依然能具有足够的浮力和稳定性,进而减低立即沉船的危险。
Hystrix 对每个外部依赖用一个单独的线程池,这样的话,如果对那个外部依赖调用延迟很严重,最多就是耗尽那个依赖自己的线程池而已,不会影响其他的依赖调用。
Hystrix 应用线程池机制的场景
- 每个服务都会调用几十个后端依赖服务,那些后端依赖服务通常是由很多不同的团队开发的。
- 每个后端依赖服务都会提供它自己的 client 调用库,比如说用 thrift 的话,就会提供对应的 thrift 依赖。
- client 调用库随时会变更。
- client 调用库随时可能会增加新的网络请求的逻辑。
- client 调用库可能会包含诸如自动重试、数据解析、内存中缓存等逻辑。
- client 调用库一般都对调用者来说是个黑盒,包括实现细节、网络访问、默认配置等等。
- 在真实的生产环境中,经常会出现调用者,突然间惊讶的发现,client 调用库发生了某些变化。
- 即使 client 调用库没有改变,依赖服务本身可能有会发生逻辑上的变化。
- 有些依赖的 client 调用库可能还会拉取其他的依赖库,而且可能那些依赖库配置的不正确。
- 大多数网络请求都是同步调用的。
- 调用失败和延迟,也有可能会发生在 client 调用库本身的代码中,不一定就是发生在网络请求中。
简单来说,就是你必须默认 client 调用库很不靠谱,而且随时可能发生各种变化,所以就要用强制隔离的方式来确保任何服务的故障不会影响当前服务。
线程池机制的优点
- 任何一个依赖服务都可以被隔离在自己的线程池内,即使自己的线程池资源填满了,也不会影响任何其他的服务调用。
- 服务可以随时引入一个新的依赖服务,因为即使这个新的依赖服务有问题,也不会影响其他任何服务的调用。
- 当一个故障的依赖服务重新变好的时候,可以通过清理掉线程池,瞬间恢复该服务的调用,而如果是 tomcat 线程池被占满,再恢复就很麻烦。
- 如果一个 client 调用库配置有问题,线程池的健康状况随时会报告,比如成功/失败/拒绝/超时的次数统计,然后可以近实时热修改依赖服务的调用配置,而不用停机。
- 基于线程池的异步本质,可以在同步的调用之上,构建一层异步调用层。
简单来说,最大的好处,就是资源隔离,确保说任何一个依赖服务故障,不会拖垮当前的这个服务。
线程池机制的缺点
线程池机制最大的缺点就是增加了 CPU 的开销。
除了 tomcat 本身的调用线程之外,还有 Hystrix 自己管理的线程池。每个 command 的执行都依托一个独立的线程,会进行排队,调度,还有上下文切换。
Hystrix 官方自己做了一个多线程异步带来的额外开销统计,通过对比多线程异步调用+同步调用得出,Netflix API 每天通过 Hystrix 执行 10 亿次调用,每个服务实例有 40 个以上的线程池,每个线程池有 10 个左右的线程。)最后发现说,用 Hystrix 的额外开销,就是给请求带来了 3ms 左右的延时,最多延时在 10ms 以内,相比于可用性和稳定性的提升,这是可以接受的。
我们可以用 Hystrix semaphore 技术来实现对某个依赖服务的并发访问量的限制,而不是通过线程池/队列的大小来限制流量。
semaphore 技术可以用来限流和削峰,但是不能用来对调研延迟的服务进行 timeout 和隔离。
execution.isolation.strategy
设置为 SEMAPHORE
,那么 Hystrix 就会用 semaphore 机制来替代线程池机制,来对依赖服务的访问进行限流。如果通过 semaphore 调用的时候,底层的网络调用延迟很严重,那么是无法 timeout 的,只能一直 block 住。一旦请求数量超过了 semaphore 限定的数量之后,就会立即开启限流。
接口限流 Demo
假设一个线程池大小为 8,等待队列的大小为 10。timeout 时长我们设置长一些,20s。
在 command 内部,写死代码,做一个 sleep,比如 sleep 3s。
- withCoreSize:设置线程池大小。
- withMaxQueueSize:设置等待队列大小。
- withQueueSizeRejectionThreshold:这个与 withMaxQueueSize 配合使用,等待队列的大小,取得是这两个参数的较小值。
如果只设置了线程池大小,另外两个 queue 相关参数没有设置的话,等待队列是处于关闭的状态。
public class GetProductInfoCommand extends HystrixCommand<ProductInfo> {
private Long productId;
private static final HystrixCommandKey KEY = HystrixCommandKey.Factory.asKey("GetProductInfoCommand");
public GetProductInfoCommand(Long productId) {
super(Setter.withGroupKey(HystrixCommandGroupKey.Factory.asKey("ProductInfoService"))
.andCommandKey(KEY)
// 线程池相关配置信息
.andThreadPoolPropertiesDefaults(HystrixThreadPoolProperties.Setter()
// 设置线程池大小为8
.withCoreSize(8)
// 设置等待队列大小为10
.withMaxQueueSize(10)
.withQueueSizeRejectionThreshold(12))
.andCommandPropertiesDefaults(HystrixCommandProperties.Setter()
.withCircuitBreakerEnabled(true)
.withCircuitBreakerRequestVolumeThreshold(20)
.withCircuitBreakerErrorThresholdPercentage(40)
.withCircuitBreakerSleepWindowInMilliseconds(3000)
// 设置超时时间
.withExecutionTimeoutInMilliseconds(20000)
// 设置fallback最大请求并发数
.withFallbackIsolationSemaphoreMaxConcurrentRequests(30)));
this.productId = productId;
}
@Override
protected ProductInfo run() throws Exception {
System.out.println("调用接口查询商品数据,productId=" + productId);
if (productId == -1L) {
throw new Exception();
}
// 请求过来,会在这里hang住3秒钟
if (productId == -2L) {
TimeUtils.sleep(3);
}
String url = "http://localhost:8081/getProductInfo?productId=" + productId;
String response = HttpClientUtils.sendGetRequest(url);
System.out.println(response);
return JSONObject.parseObject(response, ProductInfo.class);
}
@Override
protected ProductInfo getFallback() {
ProductInfo productInfo = new ProductInfo();
productInfo.setName("降级商品");
return productInfo;
}
}
copy
我们模拟 25 个请求。前 8 个请求,调用接口时会直接被 hang 住 3s,那么后面的 10 个请求会先进入等待队列中等待前面的请求执行完毕。最后的 7 个请求过来,会直接被 reject,调用 fallback 降级逻辑。
@SpringBootTest
@RunWith(SpringRunner.class)
public class RejectTest {
@Test
public void testReject() {
for (int i = 0; i < 25; ++i) {
new Thread(() -> HttpClientUtils.sendGetRequest("http://localhost:8080/getProductInfo?productId=-2")).start();
}
// 防止主线程提前结束执行
TimeUtils.sleep(50);
}
}
copy
从执行结果中,我们可以明显看出一共打印出了 7 个降级商品。这也就是请求数超过线程池+队列的数量而直接被 reject 的结果。
ProductInfo(id=null, name=降级商品, price=null, pictureList=null, specification=null, service=null, color=null, size=null, shopId=null, modifiedTime=null, cityId=null, cityName=null, brandId=null, brandName=null)
ProductInfo(id=null, name=降级商品, price=null, pictureList=null, specification=null, service=null, color=null, size=null, shopId=null, modifiedTime=null, cityId=null, cityName=null, brandId=null, brandName=null)
ProductInfo(id=null, name=降级商品, price=null, pictureList=null, specification=null, service=null, color=null, size=null, shopId=null, modifiedTime=null, cityId=null, cityName=null, brandId=null, brandName=null)
ProductInfo(id=null, name=降级商品, price=null, pictureList=null, specification=null, service=null, color=null, size=null, shopId=null, modifiedTime=null, cityId=null, cityName=null, brandId=null, brandName=null)
ProductInfo(id=null, name=降级商品, price=null, pictureList=null, specification=null, service=null, color=null, size=null, shopId=null, modifiedTime=null, cityId=null, cityName=null, brandId=null, brandName=null)
ProductInfo(id=null, name=降级商品, price=null, pictureList=null, specification=null, service=null, color=null, size=null, shopId=null, modifiedTime=null, cityId=null, cityName=null, brandId=null, brandName=null)
调用接口查询商品数据,productId=-2
调用接口查询商品数据,productId=-2
调用接口查询商品数据,productId=-2
调用接口查询商品数据,productId=-2
调用接口查询商品数据,productId=-2
调用接口查询商品数据,productId=-2
调用接口查询商品数据,productId=-2
调用接口查询商品数据,productId=-2
ProductInfo(id=null, name=降级商品, price=null, pictureList=null, specification=null, service=null, color=null, size=null, shopId=null, modifiedTime=null, cityId=null, cityName=null, brandId=null, brandName=null)
{"id": -2, "name": "iphone7手机", "price": 5599, "pictureList":"a.jpg,b.jpg", "specification": "iphone7的规格", "service": "iphone7的售后服务", "color": "红色,白色,黑色", "size": "5.5", "shopId": 1, "modifiedTime": "2017-01-01 12:00:00", "cityId": 1, "brandId": 1}
// 后面都是一些正常的商品信息,就不贴出来了
//...
copy