- 1.1 消息队列
-
1.2 搜索引擎
-
1.2.1 es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)?
-
1.2.2 es 写入数据的工作原理是什么啊?es 查询数据的工作原理是什么啊?底层的 lucene 介绍一下呗?倒排索引了解吗?
-
1.2.3 es 在数据量很大的情况下(数十亿级别)如何提高查询效率啊?
-
1.2.4 es 生产集群的部署架构是什么?每个索引的数据量大概有多少?每个索引大概有多少个分片?
-
1.3.1 在项目中缓存是如何使用的?缓存如果使用不当会造成什么后果?
-
1.3.2 Redis 和 Memcached 有什么区别?Redis 的线程模型是什么?为什么单线程的 Redis 比多线程的 Memcached 效率要高得多?
-
1.3.3 Redis 都有哪些数据类型?分别在哪些场景下使用比较合适?
-
1.3.4 Redis 的过期策略都有哪些?手写一下 LRU 代码实现?
-
1.3.5 如何保证 Redis 高并发、高可用?Redis 的主从复制原理能介绍一下么?Redis 的哨兵原理能介绍一下么?
-
1.3.6 Redis 的持久化有哪几种方式?不同的持久化机制都有什么优缺点?持久化机制具体底层是如何实现的?
-
1.3.7 Redis 集群模式的工作原理能说一下么?在集群模式下,Redis 的 key 是如何寻址的?分布式寻址都有哪些算法?了解一致性 hash 算法吗?如何动态增加和删除一个节点?
-
1.3.8 了解什么是 redis 的雪崩、穿透和击穿?Redis 崩溃之后会怎么样?系统该如何应对这种情况?如何处理 Redis 的穿透?
-
1.3.9 如何保证缓存与数据库的双写一致性?
-
1.3.10 Redis 的并发竞争问题是什么?如何解决这个问题?了解 Redis 事务的 CAS 方案吗?
-
1.3.11 生产环境中的 Redis 是怎么部署的?
-
1.4.1 为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?用过哪些分库分表中间件?不同的分库分表中间件都有什么优点和缺点?你们具体是如何对数据库如何进行垂直拆分或水平拆分的?
-
1.4.2 现在有一个未分库分表的系统,未来要分库分表,如何设计才可以让系统从未分库分表动态切换到分库分表上?
-
1.4.3 如何设计可以动态扩容缩容的分库分表方案?
-
1.4.4 分库分表之后,id 主键如何处理?
-
1.5.1 如何实现 MySQL 的读写分离?MySQL 主从复制原理是啥?如何解决 MySQL 主从同步的延时问题?
-
1.6.1 如何设计一个高并发系统?
-
1.2.1 es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)?
-
2.1 面试连环炮
-
2.2.1 为什么要进行系统拆分?如何进行系统拆分?拆分后不用 Dubbo 可以吗?
-
2.3.1 说一下 Dubbo 的工作原理?注册中心挂了可以继续通信吗?
-
2.3.2 Dubbo 支持哪些序列化协议?说一下 Hessian 的数据结构?PB 知道吗?为什么 PB 的效率是最高的?
-
2.3.3 Dubbo 负载均衡策略和集群容错策略都有哪些?动态代理策略呢?
-
2.3.4 Dubbo 的 spi 思想是什么?
-
2.3.5 如何基于 Dubbo 进行服务治理、服务降级、失败重试以及超时重试?
-
2.3.6 分布式服务接口的幂等性如何设计(比如不能重复扣款)?
-
2.3.7 分布式服务接口请求的顺序性如何保证?
-
2.3.8 如何自己设计一个类似 Dubbo 的 RPC 框架?
-
2.4.1 Zookeeper 都有哪些应用场景?
-
2.4.2 使用 Redis 如何设计分布式锁?使用 Zookeeper 来设计分布式锁可以吗?以上两种分布式锁的实现方式哪种效率比较高?
-
2.5.1 分布式事务了解吗?你们如何解决分布式事务问题的?TCC 如果出现网络连不通怎么办?XA 的一致性如何保证?
-
2.6.1 集群部署时的分布式 Session 如何实现?
-
3.1.1 Hystrix 介绍
-
3.1.2 电商网站详情页系统架构
-
3.1.3 Hystrix 线程池技术实现资源隔离
-
3.1.4 Hystrix 信号量机制实现资源隔离
-
3.1.5 Hystrix 隔离策略细粒度控制
-
3.1.6 深入 Hystrix 执行时内部原理
-
3.1.7 基于 request cache 请求缓存技术优化批量商品数据查询接口
-
3.1.8 基于本地缓存的 fallback 降级机制
-
3.1.9 深入 Hystrix 断路器执行原理
-
3.1.10 深入 Hystrix 线程池隔离与接口限流
-
3.1.11 基于 timeout 机制为服务接口调用超时提供安全保护
-
2.2.1 为什么要进行系统拆分?如何进行系统拆分?拆分后不用 Dubbo 可以吗?
-
4.1 关于微服务架构的描述
面试题
redis 的过期策略都有哪些?内存淘汰机制都有哪些?手写一下 LRU 代码实现?
面试官心理分析
如果你连这个问题都不知道,上来就懵了,回答不出来,那线上你写代码的时候,想当然的认为写进 redis 的数据就一定会存在,后面导致系统各种 bug,谁来负责?
常见的有两个问题:
- 往 redis 写入的数据怎么没了?
可能有同学会遇到,在生产环境的 redis 经常会丢掉一些数据,写进去了,过一会儿可能就没了。我的天,同学,你问这个问题就说明 redis 你就没用对啊。redis 是缓存,你给当存储了是吧?
啥叫缓存?用内存当缓存。内存是无限的吗,内存是很宝贵而且是有限的,磁盘是廉价而且是大量的。可能一台机器就几十个 G 的内存,但是可以有几个 T 的硬盘空间。redis 主要是基于内存来进行高性能、高并发的读写操作的。
那既然内存是有限的,比如 redis 就只能用 10G,你要是往里面写了 20G 的数据,会咋办?当然会干掉 10G 的数据,然后就保留 10G 的数据了。那干掉哪些数据?保留哪些数据?当然是干掉不常用的数据,保留常用的数据了。
- 数据明明过期了,怎么还占用着内存?
这是由 redis 的过期策略来决定。
面试题剖析
redis 过期策略
redis 过期策略是:定期删除+惰性删除。
所谓定期删除,指的是 redis 默认是每隔 100ms 就随机抽取一些设置了过期时间的 key,检查其是否过期,如果过期就删除。
假设 redis 里放了 10w 个 key,都设置了过期时间,你每隔几百毫秒,就检查 10w 个 key,那 redis 基本上就死了,cpu 负载会很高的,消耗在你的检查过期 key 上了。注意,这里可不是每隔 100ms 就遍历所有的设置过期时间的 key,那样就是一场性能上的灾难。实际上 redis 是每隔 100ms 随机抽取一些 key 来检查和删除的。
但是问题是,定期删除可能会导致很多过期 key 到了时间并没有被删除掉,那咋整呢?所以就是惰性删除了。这就是说,在你获取某个 key 的时候,redis 会检查一下 ,这个 key 如果设置了过期时间那么是否过期了?如果过期了此时就会删除,不会给你返回任何东西。
获取 key 的时候,如果此时 key 已经过期,就删除,不会返回任何东西。
但是实际上这还是有问题的,如果定期删除漏掉了很多过期 key,然后你也没及时去查,也就没走惰性删除,此时会怎么样?如果大量过期 key 堆积在内存里,导致 redis 内存块耗尽了,咋整?
答案是:走内存淘汰机制。
内存淘汰机制
redis 内存淘汰机制有以下几个:
- noeviction: 当内存不足以容纳新写入数据时,新写入操作会报错,这个一般没人用吧,实在是太恶心了。
- allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 key(这个是最常用的)。
- allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个 key,这个一般没人用吧,为啥要随机,肯定是把最近最少使用的 key 给干掉啊。
- volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的 key(这个一般不太合适)。
- volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个 key。
- volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的 key 优先移除。
手写一个 LRU 算法
你可以现场手写最原始的 LRU 算法,那个代码量太大了,似乎不太现实。
不求自己纯手工从底层开始打造出自己的 LRU,但是起码要知道如何利用已有的 JDK 数据结构实现一个 Java 版的 LRU。
class LRUCache<K, V> extends LinkedHashMap<K, V> {
private final int CACHE_SIZE;
/**
* 传递进来最多能缓存多少数据
*
* @param cacheSize 缓存大小
*/
public LRUCache(int cacheSize) {
// true 表示让 linkedHashMap 按照访问顺序来进行排序,最近访问的放在头部,最老访问的放在尾部。
super((int) Math.ceil(cacheSize / 0.75) + 1, 0.75f, true);
CACHE_SIZE = cacheSize;
}
@Override
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
// 当 map中的数据量大于指定的缓存个数的时候,就自动删除最老的数据。
return size() > CACHE_SIZE;
}
}
copy