- 1.1 消息队列
-
1.2 搜索引擎
-
1.2.1 es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)?
-
1.2.2 es 写入数据的工作原理是什么啊?es 查询数据的工作原理是什么啊?底层的 lucene 介绍一下呗?倒排索引了解吗?
-
1.2.3 es 在数据量很大的情况下(数十亿级别)如何提高查询效率啊?
-
1.2.4 es 生产集群的部署架构是什么?每个索引的数据量大概有多少?每个索引大概有多少个分片?
-
1.3.1 在项目中缓存是如何使用的?缓存如果使用不当会造成什么后果?
-
1.3.2 Redis 和 Memcached 有什么区别?Redis 的线程模型是什么?为什么单线程的 Redis 比多线程的 Memcached 效率要高得多?
-
1.3.3 Redis 都有哪些数据类型?分别在哪些场景下使用比较合适?
-
1.3.4 Redis 的过期策略都有哪些?手写一下 LRU 代码实现?
-
1.3.5 如何保证 Redis 高并发、高可用?Redis 的主从复制原理能介绍一下么?Redis 的哨兵原理能介绍一下么?
-
1.3.6 Redis 的持久化有哪几种方式?不同的持久化机制都有什么优缺点?持久化机制具体底层是如何实现的?
-
1.3.7 Redis 集群模式的工作原理能说一下么?在集群模式下,Redis 的 key 是如何寻址的?分布式寻址都有哪些算法?了解一致性 hash 算法吗?如何动态增加和删除一个节点?
-
1.3.8 了解什么是 redis 的雪崩、穿透和击穿?Redis 崩溃之后会怎么样?系统该如何应对这种情况?如何处理 Redis 的穿透?
-
1.3.9 如何保证缓存与数据库的双写一致性?
-
1.3.10 Redis 的并发竞争问题是什么?如何解决这个问题?了解 Redis 事务的 CAS 方案吗?
-
1.3.11 生产环境中的 Redis 是怎么部署的?
-
1.4.1 为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?用过哪些分库分表中间件?不同的分库分表中间件都有什么优点和缺点?你们具体是如何对数据库如何进行垂直拆分或水平拆分的?
-
1.4.2 现在有一个未分库分表的系统,未来要分库分表,如何设计才可以让系统从未分库分表动态切换到分库分表上?
-
1.4.3 如何设计可以动态扩容缩容的分库分表方案?
-
1.4.4 分库分表之后,id 主键如何处理?
-
1.5.1 如何实现 MySQL 的读写分离?MySQL 主从复制原理是啥?如何解决 MySQL 主从同步的延时问题?
-
1.6.1 如何设计一个高并发系统?
-
1.2.1 es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)?
-
2.1 面试连环炮
-
2.2.1 为什么要进行系统拆分?如何进行系统拆分?拆分后不用 Dubbo 可以吗?
-
2.3.1 说一下 Dubbo 的工作原理?注册中心挂了可以继续通信吗?
-
2.3.2 Dubbo 支持哪些序列化协议?说一下 Hessian 的数据结构?PB 知道吗?为什么 PB 的效率是最高的?
-
2.3.3 Dubbo 负载均衡策略和集群容错策略都有哪些?动态代理策略呢?
-
2.3.4 Dubbo 的 spi 思想是什么?
-
2.3.5 如何基于 Dubbo 进行服务治理、服务降级、失败重试以及超时重试?
-
2.3.6 分布式服务接口的幂等性如何设计(比如不能重复扣款)?
-
2.3.7 分布式服务接口请求的顺序性如何保证?
-
2.3.8 如何自己设计一个类似 Dubbo 的 RPC 框架?
-
2.4.1 Zookeeper 都有哪些应用场景?
-
2.4.2 使用 Redis 如何设计分布式锁?使用 Zookeeper 来设计分布式锁可以吗?以上两种分布式锁的实现方式哪种效率比较高?
-
2.5.1 分布式事务了解吗?你们如何解决分布式事务问题的?TCC 如果出现网络连不通怎么办?XA 的一致性如何保证?
-
2.6.1 集群部署时的分布式 Session 如何实现?
-
3.1.1 Hystrix 介绍
-
3.1.2 电商网站详情页系统架构
-
3.1.3 Hystrix 线程池技术实现资源隔离
-
3.1.4 Hystrix 信号量机制实现资源隔离
-
3.1.5 Hystrix 隔离策略细粒度控制
-
3.1.6 深入 Hystrix 执行时内部原理
-
3.1.7 基于 request cache 请求缓存技术优化批量商品数据查询接口
-
3.1.8 基于本地缓存的 fallback 降级机制
-
3.1.9 深入 Hystrix 断路器执行原理
-
3.1.10 深入 Hystrix 线程池隔离与接口限流
-
3.1.11 基于 timeout 机制为服务接口调用超时提供安全保护
-
2.2.1 为什么要进行系统拆分?如何进行系统拆分?拆分后不用 Dubbo 可以吗?
-
4.1 关于微服务架构的描述
面试题
redis 都有哪些数据类型?分别在哪些场景下使用比较合适?
面试官心理分析
除非是面试官感觉看你简历,是工作 3 年以内的比较初级的同学,可能对技术没有很深入的研究,面试官才会问这类问题。否则,在宝贵的面试时间里,面试官实在不想多问。
其实问这个问题,主要有两个原因:
- 看看你到底有没有全面的了解 redis 有哪些功能,一般怎么来用,啥场景用什么,就怕你别就会最简单的 KV 操作;
- 看看你在实际项目里都怎么玩儿过 redis。
要是你回答的不好,没说出几种数据类型,也没说什么场景,你完了,面试官对你印象肯定不好,觉得你平时就是做个简单的 set 和 get。
面试题剖析
redis 主要有以下几种数据类型:
- string
- hash
- list
- set
- sorted set
string
这是最简单的类型,就是普通的 set 和 get,做简单的 KV 缓存。
set college szu
copy
hash
这个是类似 map 的一种结构,这个一般就是可以将结构化的数据,比如一个对象(前提是这个对象没嵌套其他的对象)给缓存在 redis 里,然后每次读写缓存的时候,可以就操作 hash 里的某个字段。
hset person name bingo hset person age 20 hset person id 1 hget person name
copy
person = {
"name": "bingo",
"age": 20,
"id": 1
}
copy
list
list 是有序列表,这个可以玩儿出很多花样。
比如可以通过 list 存储一些列表型的数据结构,类似粉丝列表、文章的评论列表之类的东西。
比如可以通过 lrange 命令,读取某个闭区间内的元素,可以基于 list 实现分页查询,这个是很棒的一个功能,基于 redis 实现简单的高性能分页,可以做类似微博那种下拉不断分页的东西,性能高,就一页一页走。
# 0开始位置,-1结束位置,结束位置为-1时,表示列表的最后一个位置,即查看所有。
lrange mylist 0 -1
copy
比如可以搞个简单的消息队列,从 list 头怼进去,从 list 尾巴那里弄出来。
lpush mylist 1
lpush mylist 2
lpush mylist 3 4 5
# 1
rpop mylist
copy
set
set 是无序集合,自动去重。
直接基于 set 将系统里需要去重的数据扔进去,自动就给去重了,如果你需要对一些数据进行快速的全局去重,你当然也可以基于 jvm 内存里的 HashSet 进行去重,但是如果你的某个系统部署在多台机器上呢?得基于 redis 进行全局的 set 去重。
可以基于 set 玩儿交集、并集、差集的操作,比如交集吧,可以把两个人的粉丝列表整一个交集,看看俩人的共同好友是谁?对吧。
把两个大 V 的粉丝都放在两个 set 中,对两个 set 做交集。
#-------操作一个set-------
# 添加元素
sadd mySet 1
# 查看全部元素
smembers mySet
# 判断是否包含某个值
sismember mySet 3
# 删除某个/些元素
srem mySet 1
srem mySet 2 4
# 查看元素个数
scard mySet
# 随机删除一个元素
spop mySet
#-------操作多个set-------
# 将一个set的元素移动到另外一个set
smove yourSet mySet 2
# 求两set的交集
sinter yourSet mySet
# 求两set的并集
sunion yourSet mySet
# 求在yourSet中而不在mySet中的元素
sdiff yourSet mySet
copy
sorted set
sorted set 是排序的 set,去重但可以排序,写进去的时候给一个分数,自动根据分数排序。
zadd board 85 zhangsan
zadd board 72 lisi
zadd board 96 wangwu
zadd board 63 zhaoliu
# 获取排名前三的用户(默认是升序,所以需要 rev 改为降序)
zrevrange board 0 3
# 获取某用户的排名
zrank board zhaoliu
copy