- 1.1 消息队列
-
1.2 搜索引擎
-
1.2.1 es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)?
-
1.2.2 es 写入数据的工作原理是什么啊?es 查询数据的工作原理是什么啊?底层的 lucene 介绍一下呗?倒排索引了解吗?
-
1.2.3 es 在数据量很大的情况下(数十亿级别)如何提高查询效率啊?
-
1.2.4 es 生产集群的部署架构是什么?每个索引的数据量大概有多少?每个索引大概有多少个分片?
-
1.3.1 在项目中缓存是如何使用的?缓存如果使用不当会造成什么后果?
-
1.3.2 Redis 和 Memcached 有什么区别?Redis 的线程模型是什么?为什么单线程的 Redis 比多线程的 Memcached 效率要高得多?
-
1.3.3 Redis 都有哪些数据类型?分别在哪些场景下使用比较合适?
-
1.3.4 Redis 的过期策略都有哪些?手写一下 LRU 代码实现?
-
1.3.5 如何保证 Redis 高并发、高可用?Redis 的主从复制原理能介绍一下么?Redis 的哨兵原理能介绍一下么?
-
1.3.6 Redis 的持久化有哪几种方式?不同的持久化机制都有什么优缺点?持久化机制具体底层是如何实现的?
-
1.3.7 Redis 集群模式的工作原理能说一下么?在集群模式下,Redis 的 key 是如何寻址的?分布式寻址都有哪些算法?了解一致性 hash 算法吗?如何动态增加和删除一个节点?
-
1.3.8 了解什么是 redis 的雪崩、穿透和击穿?Redis 崩溃之后会怎么样?系统该如何应对这种情况?如何处理 Redis 的穿透?
-
1.3.9 如何保证缓存与数据库的双写一致性?
-
1.3.10 Redis 的并发竞争问题是什么?如何解决这个问题?了解 Redis 事务的 CAS 方案吗?
-
1.3.11 生产环境中的 Redis 是怎么部署的?
-
1.4.1 为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?用过哪些分库分表中间件?不同的分库分表中间件都有什么优点和缺点?你们具体是如何对数据库如何进行垂直拆分或水平拆分的?
-
1.4.2 现在有一个未分库分表的系统,未来要分库分表,如何设计才可以让系统从未分库分表动态切换到分库分表上?
-
1.4.3 如何设计可以动态扩容缩容的分库分表方案?
-
1.4.4 分库分表之后,id 主键如何处理?
-
1.5.1 如何实现 MySQL 的读写分离?MySQL 主从复制原理是啥?如何解决 MySQL 主从同步的延时问题?
-
1.6.1 如何设计一个高并发系统?
-
1.2.1 es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)?
-
2.1 面试连环炮
-
2.2.1 为什么要进行系统拆分?如何进行系统拆分?拆分后不用 Dubbo 可以吗?
-
2.3.1 说一下 Dubbo 的工作原理?注册中心挂了可以继续通信吗?
-
2.3.2 Dubbo 支持哪些序列化协议?说一下 Hessian 的数据结构?PB 知道吗?为什么 PB 的效率是最高的?
-
2.3.3 Dubbo 负载均衡策略和集群容错策略都有哪些?动态代理策略呢?
-
2.3.4 Dubbo 的 spi 思想是什么?
-
2.3.5 如何基于 Dubbo 进行服务治理、服务降级、失败重试以及超时重试?
-
2.3.6 分布式服务接口的幂等性如何设计(比如不能重复扣款)?
-
2.3.7 分布式服务接口请求的顺序性如何保证?
-
2.3.8 如何自己设计一个类似 Dubbo 的 RPC 框架?
-
2.4.1 Zookeeper 都有哪些应用场景?
-
2.4.2 使用 Redis 如何设计分布式锁?使用 Zookeeper 来设计分布式锁可以吗?以上两种分布式锁的实现方式哪种效率比较高?
-
2.5.1 分布式事务了解吗?你们如何解决分布式事务问题的?TCC 如果出现网络连不通怎么办?XA 的一致性如何保证?
-
2.6.1 集群部署时的分布式 Session 如何实现?
-
3.1.1 Hystrix 介绍
-
3.1.2 电商网站详情页系统架构
-
3.1.3 Hystrix 线程池技术实现资源隔离
-
3.1.4 Hystrix 信号量机制实现资源隔离
-
3.1.5 Hystrix 隔离策略细粒度控制
-
3.1.6 深入 Hystrix 执行时内部原理
-
3.1.7 基于 request cache 请求缓存技术优化批量商品数据查询接口
-
3.1.8 基于本地缓存的 fallback 降级机制
-
3.1.9 深入 Hystrix 断路器执行原理
-
3.1.10 深入 Hystrix 线程池隔离与接口限流
-
3.1.11 基于 timeout 机制为服务接口调用超时提供安全保护
-
2.2.1 为什么要进行系统拆分?如何进行系统拆分?拆分后不用 Dubbo 可以吗?
-
4.1 关于微服务架构的描述
面试题
redis 的持久化有哪几种方式?不同的持久化机制都有什么优缺点?持久化机制具体底层是如何实现的?
面试官心理分析
redis 如果仅仅只是将数据缓存在内存里面,如果 redis 宕机了再重启,内存里的数据就全部都弄丢了啊。你必须得用 redis 的持久化机制,将数据写入内存的同时,异步的慢慢的将数据写入磁盘文件里,进行持久化。
如果 redis 宕机重启,自动从磁盘上加载之前持久化的一些数据就可以了,也许会丢失少许数据,但是至少不会将所有数据都弄丢。
这个其实一样,针对的都是 redis 的生产环境可能遇到的一些问题,就是 redis 要是挂了再重启,内存里的数据不就全丢了?能不能重启的时候把数据给恢复了?
面试题剖析
持久化主要是做灾难恢复、数据恢复,也可以归类到高可用的一个环节中去,比如你 redis 整个挂了,然后 redis 就不可用了,你要做的事情就是让 redis 变得可用,尽快变得可用。
重启 redis,尽快让它对外提供服务,如果没做数据备份,这时候 redis 启动了,也不可用啊,数据都没了。
很可能说,大量的请求过来,缓存全部无法命中,在 redis 里根本找不到数据,这个时候就死定了,出现缓存雪崩问题。所有请求没有在 redis 命中,就会去 mysql 数据库这种数据源头中去找,一下子 mysql 承接高并发,然后就挂了...
如果你把 redis 持久化做好,备份和恢复方案做到企业级的程度,那么即使你的 redis 故障了,也可以通过备份数据,快速恢复,一旦恢复立即对外提供服务。
redis 持久化的两种方式
- RDB:RDB 持久化机制,是对 redis 中的数据执行周期性的持久化。
- AOF:AOF 机制对每条写入命令作为日志,以
append-only
的模式写入一个日志文件中,在 redis 重启的时候,可以通过回放 AOF 日志中的写入指令来重新构建整个数据集。
通过 RDB 或 AOF,都可以将 redis 内存中的数据给持久化到磁盘上面来,然后可以将这些数据备份到别的地方去,比如说阿里云等云服务。
如果 redis 挂了,服务器上的内存和磁盘上的数据都丢了,可以从云服务上拷贝回来之前的数据,放到指定的目录中,然后重新启动 redis,redis 就会自动根据持久化数据文件中的数据,去恢复内存中的数据,继续对外提供服务。
如果同时使用 RDB 和 AOF 两种持久化机制,那么在 redis 重启的时候,会使用 AOF 来重新构建数据,因为 AOF 中的数据更加完整。
RDB 优缺点
RDB 会生成多个数据文件,每个数据文件都代表了某一个时刻中 redis 的数据,这种多个数据文件的方式,非常适合做冷备,可以将这种完整的数据文件发送到一些远程的安全存储上去,比如说 Amazon 的 S3 云服务上去,在国内可以是阿里云的 ODPS 分布式存储上,以预定好的备份策略来定期备份 redis 中的数据。
RDB 对 redis 对外提供的读写服务,影响非常小,可以让 redis 保持高性能,因为 redis 主进程只需要 fork 一个子进程,让子进程执行磁盘 IO 操作来进行 RDB 持久化即可。
相对于 AOF 持久化机制来说,直接基于 RDB 数据文件来重启和恢复 redis 进程,更加快速。
如果想要在 redis 故障时,尽可能少的丢失数据,那么 RDB 没有 AOF 好。一般来说,RDB 数据快照文件,都是每隔 5 分钟,或者更长时间生成一次,这个时候就得接受一旦 redis 进程宕机,那么会丢失最近 5 分钟的数据。
RDB 每次在 fork 子进程来执行 RDB 快照数据文件生成的时候,如果数据文件特别大,可能会导致对客户端提供的服务暂停数毫秒,或者甚至数秒。
AOF 优缺点
- AOF 可以更好的保护数据不丢失,一般 AOF 会每隔 1 秒,通过一个后台线程执行一次
fsync
操作,最多丢失 1 秒钟的数据。 - AOF 日志文件以
append-only
模式写入,所以没有任何磁盘寻址的开销,写入性能非常高,而且文件不容易破损,即使文件尾部破损,也很容易修复。 - AOF 日志文件即使过大的时候,出现后台重写操作,也不会影响客户端的读写。因为在
rewrite
log 的时候,会对其中的指令进行压缩,创建出一份需要恢复数据的最小日志出来。在创建新日志文件的时候,老的日志文件还是照常写入。当新的 merge 后的日志文件 ready 的时候,再交换新老日志文件即可。 - AOF 日志文件的命令通过非常可读的方式进行记录,这个特性非常适合做灾难性的误删除的紧急恢复。比如某人不小心用
flushall
命令清空了所有数据,只要这个时候后台rewrite
还没有发生,那么就可以立即拷贝 AOF 文件,将最后一条flushall
命令给删了,然后再将该AOF
文件放回去,就可以通过恢复机制,自动恢复所有数据。 - 对于同一份数据来说,AOF 日志文件通常比 RDB 数据快照文件更大。
- AOF 开启后,支持的写 QPS 会比 RDB 支持的写 QPS 低,因为 AOF 一般会配置成每秒
fsync
一次日志文件,当然,每秒一次fsync
,性能也还是很高的。(如果实时写入,那么 QPS 会大降,redis 性能会大大降低) - 以前 AOF 发生过 bug,就是通过 AOF 记录的日志,进行数据恢复的时候,没有恢复一模一样的数据出来。所以说,类似 AOF 这种较为复杂的基于命令日志 / merge / 回放的方式,比基于 RDB 每次持久化一份完整的数据快照文件的方式,更加脆弱一些,容易有 bug。不过 AOF 就是为了避免 rewrite 过程导致的 bug,因此每次 rewrite 并不是基于旧的指令日志进行 merge 的,而是基于当时内存中的数据进行指令的重新构建,这样健壮性会好很多。
RDB 和 AOF 到底该如何选择
- 不要仅仅使用 RDB,因为那样会导致你丢失很多数据;
- 也不要仅仅使用 AOF,因为那样有两个问题:第一,你通过 AOF 做冷备,没有 RDB 做冷备来的恢复速度更快;第二,RDB 每次简单粗暴生成数据快照,更加健壮,可以避免 AOF 这种复杂的备份和恢复机制的 bug;
- redis 支持同时开启开启两种持久化方式,我们可以综合使用 AOF 和 RDB 两种持久化机制,用 AOF 来保证数据不丢失,作为数据恢复的第一选择; 用 RDB 来做不同程度的冷备,在 AOF 文件都丢失或损坏不可用的时候,还可以使用 RDB 来进行快速的数据恢复。