-
Introduction
- 入门
- 分布式集群
- 数据
- 分布式增删改查
- 搜索
- 映射和分析
- 结构化查询
- 排序
- 分布式搜索
- 索引管理
- 深入分片
- 结构化搜索
- 全文搜索
- 多字段搜索
- 模糊匹配
- Partial_Matching
- Relevance
- Language intro
- Identifying words
- Token normalization
- Stemming
- Stopwords
- Synonyms
- Fuzzy matching
-
Aggregations
-
overview
-
circuit breaker fd settings
-
filtering
-
facets
-
docvalues
-
eager
-
breadth vs depth
-
Conclusion
-
concepts buckets
-
basic example
-
add metric
-
nested bucket
-
extra metrics
-
bucket metric list
-
histogram
-
date histogram
-
scope
-
filtering
-
sorting ordering
-
approx intro
-
cardinality
-
percentiles
-
sigterms intro
-
sigterms
-
fielddata
-
analyzed vs not
-
overview
- 地理坐标点
- Geohashe
- 地理位置聚合
- 地理形状
- 关系
- 嵌套
- Parent Child
- Scaling
- Cluster Admin
- Deployment
- Post Deployment
[[slop]] === Mixing It Up
Requiring exact-phrase matches ((("proximity matching", "slop parameter")))may be too strict a constraint. Perhaps we do
want documents that contain quick brown fox'' to be considered a match for the query
quick fox,'' even though the positions aren't exactly equivalent.
We can introduce a degree ((("slop parameter")))of flexibility into phrase matching by using the
slop
parameter:
[source,js]
GET /my_index/my_type/_search { "query": { "match_phrase": { "title": { "query": "quick fox", "slop": 1 } } } }
// SENSE: 120_Proximity_Matching/10_Slop.json
The slop
parameter tells the match_phrase
query how((("match_phrase query", "slop parameter"))) far apart terms are
allowed to be while still considering the document a match. By how far
apart we mean how many times do you need to move a term in order to make
the query and document match?
We'll start with a simple example. To make the query quick fox
match
a document containing quick brown fox
we need a slop
of just 1
:
Pos 1 Pos 2 Pos 3
-----------------------------------------------
Doc: quick brown fox
-----------------------------------------------
Query: quick fox
Slop 1: quick ↳ fox
copy
Although all words need to be present in phrase matching, even when using slop
,
the words don't necessarily need to be in the same sequence in order to
match. With a high enough slop
value, words can be arranged in any order.
To make the query fox quick
match our document, we need a slop
of 3
:
Pos 1 Pos 2 Pos 3
-----------------------------------------------
Doc: quick brown fox
-----------------------------------------------
Query: fox quick
Slop 1: fox|quick ↵ <1>
Slop 2: quick ↳ fox
Slop 3: quick ↳ fox
copy
<1> Note that fox
and quick
occupy the same position in this step.
Switching word order from fox quick
to quick fox
thus requires two
steps, or a slop
of 2
.