-
Introduction
- 入门
- 分布式集群
- 数据
- 分布式增删改查
- 搜索
- 映射和分析
- 结构化查询
- 排序
- 分布式搜索
- 索引管理
- 深入分片
- 结构化搜索
- 全文搜索
- 多字段搜索
- 模糊匹配
- Partial_Matching
- Relevance
- Language intro
- Identifying words
- Token normalization
- Stemming
- Stopwords
- Synonyms
- Fuzzy matching
-
Aggregations
-
overview
-
circuit breaker fd settings
-
filtering
-
facets
-
docvalues
-
eager
-
breadth vs depth
-
Conclusion
-
concepts buckets
-
basic example
-
add metric
-
nested bucket
-
extra metrics
-
bucket metric list
-
histogram
-
date histogram
-
scope
-
filtering
-
sorting ordering
-
approx intro
-
cardinality
-
percentiles
-
sigterms intro
-
sigterms
-
fielddata
-
analyzed vs not
-
overview
- 地理坐标点
- Geohashe
- 地理位置聚合
- 地理形状
- 关系
- 嵌套
- Parent Child
- Scaling
- Cluster Admin
- Deployment
- Post Deployment
[[lowercase-token-filter]] === In That Case
The most frequently used token filter is the lowercase
filter, which does
exactly what you would expect; it transforms ((("tokens", "normalizing", "lowercase filter")))((("lowercase token filter")))each token into its lowercase
form:
[source,js]
GET /_analyze?tokenizer=standard&filters=lowercase The QUICK Brown FOX! <1>
<1> Emits tokens the
, quick
, brown
, fox
It doesn't matter whether users search for fox
or FOX
, as long as the same
analysis process is applied at query time and at search time. The lowercase
filter will transform a query for FOX
into a query for fox
, which is the
same token that we have stored in our inverted index.
To use token filters as part of the analysis process, we ((("analyzers", "using token filters")))((("token filters", "using with analyzers")))can create a custom
analyzer:
[source,js]
PUT /my_index { "settings": { "analysis": { "analyzer": { "my_lowercaser": { "tokenizer": "standard", "filter": [ "lowercase" ] } } } } }
And we can test it out with the analyze
API:
[source,js]
GET /my_index/_analyze?analyzer=my_lowercaser The QUICK Brown FOX! <1>
<1> Emits tokens the
, quick
, brown
, fox