-
Introduction
- 入门
- 分布式集群
- 数据
- 分布式增删改查
- 搜索
- 映射和分析
- 结构化查询
- 排序
- 分布式搜索
- 索引管理
- 深入分片
- 结构化搜索
- 全文搜索
- 多字段搜索
- 模糊匹配
- Partial_Matching
- Relevance
- Language intro
- Identifying words
- Token normalization
- Stemming
- Stopwords
- Synonyms
- Fuzzy matching
-
Aggregations
-
overview
-
circuit breaker fd settings
-
filtering
-
facets
-
docvalues
-
eager
-
breadth vs depth
-
Conclusion
-
concepts buckets
-
basic example
-
add metric
-
nested bucket
-
extra metrics
-
bucket metric list
-
histogram
-
date histogram
-
scope
-
filtering
-
sorting ordering
-
approx intro
-
cardinality
-
percentiles
-
sigterms intro
-
sigterms
-
fielddata
-
analyzed vs not
-
overview
- 地理坐标点
- Geohashe
- 地理位置聚合
- 地理形状
- 关系
- 嵌套
- Parent Child
- Scaling
- Cluster Admin
- Deployment
- Post Deployment
=== Index-Time Optimizations
All of the solutions we've talked about so far are implemented at query time. ((("index time optimizations")))((("partial matching", "index time optimizations")))They don't require any special mappings or indexing patterns; they simply work with the data that you've already indexed.
The flexibility of query-time operations comes at a cost: search performance. Sometimes it may make sense to move the cost away from the query. In a real- time web application, an additional 100ms may be too much latency to tolerate.
By preparing your data at index time, you can make your searches more flexible and improve performance. You still pay a price: increased index size and slightly slower indexing throughput, but it is a price you pay once at index time, instead of paying it on every query.
Your users will thank you.