-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Math
本小节总结一些与数学(尤其是数论部分)有关的基础,主要总结了《挑战程序设计竞赛》第二章。
最大公约数(GCD, Greatest Common Divisor)
常用的方法为辗转相除法,也称为欧几里得算法。不妨设函数gcd(a, b)
是自然数a
, b
的最大公约数,不妨设a > b
, 则有 , 那么对于gcd(b, q)
则是b
和q
的最大公约数,也就是说gcd(b, q)
既能整除b
, 又能整除a
(因为 , p
是整数),如此反复最后得到gcd(a, b) = gcd(c, 0)
, 第二个数为0时直接返回c
. 如果最开始a < b
, 那么gcd(b, a % b) = gcd(b, a) = gcd(a, b % a)
.
关于时间复杂度的证明:可以分a > b/2
和a < b/2
证明,对数级别的时间复杂度,过程略。
与最大公约数相关的还有最小公倍数(LCM, Lowest Common Multiple), 它们两者之间的关系为 .
Java
public static long gcd(long a, long b) {
return (b == 0) ? a : gcd(b, a % b);
}
copy
Problem
给定平面上两个坐标 P1=(x1, y1), P2=(x2,y2), 问线段 P1P2 上除 P1, P2以外还有几个整数坐标点?
Solution
问的是线段 P1P2, 故除 P1,P2以外的坐标需在 x1,x2,y1,y2范围之内,且不包含端点。在两端点不重合的前提下有:
那么若得知 , 则有 必为 的整数倍大小,又因为 , 故最多有 个整数坐标点。
扩展欧几里得算法
求解整系数 和 满足 , 仿照欧几里得算法,应该要寻找 .
Java
public class Solution {
public static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
public static int[] gcdExt(int a, int b) {
if (b == 0) {
return new int[] {a, 1, 0};
} else {
int[] vals = gcdExt(b, a % b);
int d = vals[0];
int x = vals[2];
int y = vals[1];
y -= (a / b) * x;
return new int[] {d, x, y};
}
}
public static void main(String[] args) {
int a = 4, b = 11;
int[] result = gcdExt(a, b);
System.out.printf("d = %d, x = %d, y = %d.\n", result[0], result[1], result[2]);
}
}
copy
Problem
求整数 和 使得 .
Solution
不妨设gcd(a, b) = M
, 那么有 ==> 如果 M 大于1,由于等式左边为整数,故等式不成立,所以要想题中等式有解,必有gcd(a, b) = 1
.
扩展提:题中等式右边为1,假如为2又会怎样?
提示:此时, c 为等式右边的正整数值。详细推导见 How to find solutions of linear Diophantine ax + by = c?