-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Binary Search Tree Iterator
Question
- lintcode: (86) Binary Search Tree Iterator
Design an iterator over a binary search tree with the following rules:
- Elements are visited in ascending order (i.e. an in-order traversal)
- next() and hasNext() queries run in O(1) time in average.
Example
For the following binary search tree, in-order traversal by using iterator is [1, 6, 10, 11, 12]
10
/ \
1 11
\ \
6 12
Challenge
Extra memory usage O(h), h is the height of the tree.
Super Star: Extra memory usage O(1)
copy
题解 - 中序遍历
仍然考的是中序遍历,但是是非递归实现。其实这道题等价于写一个二叉树中序遍历的迭代器。需要内置一个栈,一开始先存储到最左叶子节点的路径。在遍历的过程中,只要当前节点存在右子树,则进入右子树,存储从此处开始到当前子树里最左叶子节点的路径。
C++
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
* Example of iterate a tree:
* BSTIterator iterator = BSTIterator(root);
* while (iterator.hasNext()) {
* TreeNode * node = iterator.next();
* do something for node
*/
class BSTIterator {
private:
stack<TreeNode*> stack_;
TreeNode* cur_ = NULL;
public:
//@param root: The root of binary tree.
BSTIterator(TreeNode *root) {
// write your code here
cur_ = root;
}
//@return: True if there has next node, or false
bool hasNext() {
// write your code here
return (cur_ || !stack_.empty());
}
//@return: return next node
TreeNode* next() {
// write your code here
while (cur_) {
stack_.push(cur_);
cur_ = cur_->left;
}
cur_ = stack_.top();
stack_.pop();
TreeNode* node = cur_;
cur_ = cur_->right;
return node;
}
};
copy
Java
/**
* Definition of TreeNode:
* public class TreeNode {
* public int val;
* public TreeNode left, right;
* public TreeNode(int val) {
* this.val = val;
* this.left = this.right = null;
* }
* }
* Example of iterate a tree:
* Solution iterator = new Solution(root);
* while (iterator.hasNext()) {
* TreeNode node = iterator.next();
* do something for node
* }
*/
public class Solution {
private Stack<TreeNode> stack = new Stack<>();
private TreeNode curt;
// @param root: The root of binary tree.
public Solution(TreeNode root) {
curt = root;
}
//@return: True if there has next node, or false
public boolean hasNext() {
return (curt != null || !stack.isEmpty()); //important to judge curt != null
}
//@return: return next node
public TreeNode next() {
while (curt != null) {
stack.push(curt);
curt = curt.left;
}
curt = stack.pop();
TreeNode node = curt;
curt = curt.right;
return node;
}
}
copy
源码分析
- 这里容易出错的是
hasNext()
函数中的判断语句,不能漏掉curt != null
。 - 如果是 leetcode 上的原题,由于接口不同,则不需要维护 current 指针。