-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Backpack II
Question
- lintcode: (125) Backpack II
Problem Statement
Given n items with size and value Vi, and a backpack with size m. What's the maximum value can you put into the backpack?
Example
Given 4 items with size [2, 3, 5, 7]
and value [1, 5, 2, 4]
, and a
backpack with size 10
. The maximum value is 9
.
Note
You cannot divide item into small pieces and the total size of items you choose should smaller or equal to m.
Challenge
O(n x m) memory is acceptable, can you do it in O(m) memory?
题解
首先定义状态 为前 个物品放入size为 的背包中所获得的最大价值,则相应的状态转移方程为:
详细分析过程见 Knapsack
C++ - 2D vector for result
class Solution {
public:
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
int backPackII(int m, vector<int> A, vector<int> V) {
if (A.empty() || V.empty() || m < 1) {
return 0;
}
const int N = A.size() + 1;
const int M = m + 1;
vector<vector<int> > result;
result.resize(N);
for (vector<int>::size_type i = 0; i != N; ++i) {
result[i].resize(M);
std::fill(result[i].begin(), result[i].end(), 0);
}
for (vector<int>::size_type i = 1; i != N; ++i) {
for (int j = 0; j != M; ++j) {
if (j < A[i - 1]) {
result[i][j] = result[i - 1][j];
} else {
int temp = result[i - 1][j - A[i - 1]] + V[i - 1];
result[i][j] = max(temp, result[i - 1][j]);
}
}
}
return result[N - 1][M - 1];
}
};
copy
Java
public class Solution {
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
public int backPackII(int m, int[] A, int V[]) {
if (A == null || V == null || A.length == 0 || V.length == 0) return 0;
final int N = A.length;
final int M = m;
int[][] bp = new int[N + 1][M + 1];
for (int i = 0; i < N; i++) {
for (int j = 0; j <= M; j++) {
if (A[i] > j) {
bp[i + 1][j] = bp[i][j];
} else {
bp[i + 1][j] = Math.max(bp[i][j], bp[i][j - A[i]] + V[i]);
}
}
}
return bp[N][M];
}
}
copy
源码分析
- 使用二维矩阵保存结果result
- 返回result矩阵的右下角元素——背包size限制为m时的最大价值
按照第一题backpack的思路,这里可以使用一维数组进行空间复杂度优化。优化方法为逆序求result[j]
,优化后的代码如下:
C++ 1D vector for result
class Solution {
public:
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
int backPackII(int m, vector<int> A, vector<int> V) {
if (A.empty() || V.empty() || m < 1) {
return 0;
}
const int M = m + 1;
vector<int> result;
result.resize(M);
std::fill(result.begin(), result.end(), 0);
for (vector<int>::size_type i = 0; i != A.size(); ++i) {
for (int j = m; j >= 0; --j) {
if (j < A[i]) {
// result[j] = result[j];
} else {
int temp = result[j - A[i]] + V[i];
result[j] = max(temp, result[j]);
}
}
}
return result[M - 1];
}
};
copy