-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Flip Bits
Question
- lintcode: Flip Bits
Problem Statement
Determine the number of bits required to flip if you want to convert integer n to integer m.
Notice
Both n and m are 32-bit integers.
Example
Given n = 31
(11111), m = 14
(01110), return 2
.
题解
比较两个数不同的比特位个数,显然容易想到可以使用异或处理两个整数,相同的位上为0,不同的位上为1,故接下来只需将异或后1的个数求出即可。容易想到的方法是移位后和1按位与得到最低位的结果,使用计数器记录这一结果,直至最后操作数为0时返回最终值。这种方法需要遍历元素的每一位,有咩有更为高效的做法呢?还记得之前做过的 O1 Check Power of 2 吗?x & (x - 1)
既然可以检查2的整数次幂,那么如何才能进一步得到所有1的个数呢?——将异或得到的数分拆为若干个2的整数次幂,计算得到有多少个2的整数次幂即可。
以上的分析过程对于正数来说是毫无问题的,但问题就在于如果出现了负数如何破?不确定的时候就来个实例测测看,以-2为例,(-2) & (-2 - 1)的计算如下所示(简单起见这里以8位为准):
11111110 <==> -2 -2 <==> 11111110
+ &
11111111 <==> -1 -3 <==> 11111101
= =
11111101 11111100
copy
细心的你也许发现了对于负数来说,其表现也是我们需要的——x & (x - 1)
的含义即为将二进制比特位的值为1的最低位置零。逐步迭代直至最终值为0时返回。
C/C++ 和 Java 中左溢出时会直接将高位丢弃,正好方便了我们的计算,但是在 Python 中就没这么幸运了,因为溢出时会自动转换类型,Orz... 所以使用 Python 时需要对负数专门处理,转换为求其补数中0的个数。
Python
class Solution:
"""
@param a, b: Two integer
return: An integer
"""
def bitSwapRequired(self, a, b):
count = 0
a_xor_b = a ^ b
neg_flag = False
if a_xor_b < 0:
a_xor_b = abs(a_xor_b) - 1
neg_flag = True
while a_xor_b > 0:
count += 1
a_xor_b &= (a_xor_b - 1)
# bit_wise = 32
if neg_flag:
count = 32 - count
return count
copy
C++
class Solution {
public:
/**
*@param a, b: Two integer
*return: An integer
*/
int bitSwapRequired(int a, int b) {
int count = 0;
int a_xor_b = a ^ b;
while (a_xor_b != 0) {
++count;
a_xor_b &= (a_xor_b - 1);
}
return count;
}
};
copy
Java
class Solution {
/**
*@param a, b: Two integer
*return: An integer
*/
public static int bitSwapRequired(int a, int b) {
int count = 0;
int a_xor_b = a ^ b;
while (a_xor_b != 0) {
++count;
a_xor_b &= (a_xor_b - 1);
}
return count;
}
};
copy
源码分析
Python 中 int 溢出时会自动变为 long 类型,故处理负数时需要求补数中0的个数,间接求得原异或得到的数中1的个数。
考虑到负数的可能,C/C++, Java 中循环终止条件为a_xor_b != 0
,而不是a_xor_b > 0
.
复杂度分析
取决于异或后数中1的个数,O(max(ones in a ^ b))
.
关于 Python 中位运算的一些坑总结在参考链接中。