-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Insert Node in a Binary Search Tree
Question
- lintcode: (85) Insert Node in a Binary Search Tree
Given a binary search tree and a new tree node, insert the node into the tree. You should keep the tree still be a valid binary search tree.
Example
Given binary search tree as follow:
2
/ \
1 4
/
3
after Insert node 6, the tree should be:
2
/ \
1 4
/ \
3 6
Challenge
Do it without recursion
copy
题解 - 递归
二叉树的题使用递归自然是最好理解的,代码也简洁易懂,缺点就是递归调用时栈空间容易溢出,故实际实现中一般使用迭代替代递归,性能更佳嘛。不过迭代的缺点就是代码量稍(很)大,逻辑也可能不是那么好懂。
既然确定使用递归,那么接下来就应该考虑具体的实现问题了。在递归的具体实现中,主要考虑如下两点:
- 基本条件/终止条件 - 返回值需斟酌。
- 递归步/条件递归 - 能使原始问题收敛。
首先来找找递归步,根据二叉查找树的定义,若插入节点的值若大于当前节点的值,则继续与当前节点的右子树的值进行比较;反之则继续与当前节点的左子树的值进行比较。题目的要求是返回最终二叉搜索树的根节点,从以上递归步的描述中似乎还难以对应到实际代码,这时不妨分析下终止条件。
有了递归步,终止条件也就水到渠成了,若当前节点为空时,即返回结果。问题是——返回什么结果?当前节点为空时,说明应该将「插入节点」插入到上一个遍历节点的左子节点或右子节点。对应到程序代码中即为root->right = node
或者root->left = node
. 也就是说递归步使用root->right/left = func(...)
即可。
C++ Recursion
/**
* forked from http://www.jiuzhang.com/solutions/insert-node-in-binary-search-tree/
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root: The root of the binary search tree.
* @param node: insert this node into the binary search tree
* @return: The root of the new binary search tree.
*/
TreeNode* insertNode(TreeNode* root, TreeNode* node) {
if (NULL == root) {
return node;
}
if (node->val <= root->val) {
root->left = insertNode(root->left, node);
} else {
root->right = insertNode(root->right, node);
}
return root;
}
};
copy
Java Recursion
public class Solution {
/**
* @param root: The root of the binary search tree.
* @param node: insert this node into the binary search tree
* @return: The root of the new binary search tree.
*/
public TreeNode insertNode(TreeNode root, TreeNode node) {
if (root == null) {
return node;
}
if (root.val > node.val) {
root.left = insertNode(root.left, node);
} else {
root.right = insertNode(root.right, node);
}
return root;
}
}
copy
题解 - 迭代
看过了以上递归版的题解,对于这个题来说,将递归转化为迭代的思路也是非常清晰易懂的。迭代比较当前节点的值和插入节点的值,到了二叉树的最后一层时选择是链接至左子结点还是右子节点。
C++
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root: The root of the binary search tree.
* @param node: insert this node into the binary search tree
* @return: The root of the new binary search tree.
*/
TreeNode* insertNode(TreeNode* root, TreeNode* node) {
if (NULL == root) {
return node;
}
TreeNode* tempNode = root;
while (NULL != tempNode) {
if (node->val <= tempNode->val) {
if (NULL == tempNode->left) {
tempNode->left = node;
return root;
}
tempNode = tempNode->left;
} else {
if (NULL == tempNode->right) {
tempNode->right = node;
return root;
}
tempNode = tempNode->right;
}
}
return root;
}
};
copy
源码分析
在NULL == tempNode->right
或者NULL == tempNode->left
时需要在链接完node
后立即返回root
,避免死循环。
Java Iterative
public class Solution {
/**
* @param root: The root of the binary search tree.
* @param node: insert this node into the binary search tree
* @return: The root of the new binary search tree.
*/
public TreeNode insertNode(TreeNode root, TreeNode node) {
// write your code here
if (root == null) return node;
if (node == null) return root;
TreeNode rootcopy = root;
while (root != null) {
if (root.val <= node.val && root.right == null) {
root.right = node;
break;
}
else if (root.val > node.val && root.left == null) {
root.left = node;
break;
}
else if(root.val <= node.val) root = root.right;
else root = root.left;
}
return rootcopy;
}
}
copy