-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Plus One
Question
- leetcode: Plus One | LeetCode OJ
- lintcode: (407) Plus One
Problem Statement
Given a non-negative number represented as an array of digits, plus one to the number.
The digits are stored such that the most significant digit is at the head of the list.
Example
Given [1,2,3] which represents 123, return [1,2,4].
Given [9,9,9] which represents 999, return [1,0,0,0].
题解
又是一道两个整数按数位相加的题,自后往前累加,处理下进位即可。这道题中是加1,其实还可以扩展至加2,加3等。
C++
class Solution {
public:
/**
* @param digits a number represented as an array of digits
* @return the result
*/
vector<int> plusOne(vector<int>& digits) {
return plusN(digits, 1);
}
vector<int> plusN(vector<int>& digits, int n) {
vector<int> result;
int carry = n;
for (int i = digits.size() - 1; i >= 0; i--) {
result.insert(result.begin(), (digits[i] + carry) % 10);
carry = (digits[i] + carry) / 10;
}
if (carry) result.insert(result.begin(), carry);
return result;
}
};
copy
Java
public class Solution {
/**
* @param digits a number represented as an array of digits
* @return the result
*/
public int[] plusOne(int[] digits) {
return plusDigit(digits, 1);
}
private int[] plusDigit(int[] digits, int digit) {
if (digits == null || digits.length == 0) return null;
// regard digit(0~9) as carry
int carry = digit;
int[] result = new int[digits.length];
for (int i = digits.length - 1; i >= 0; i--) {
result[i] = (digits[i] + carry) % 10;
carry = (digits[i] + carry) / 10;
}
// carry == 1
if (carry == 1) {
int[] finalResult = new int[result.length + 1];
finalResult[0] = 1;
return finalResult;
}
return result;
}
}
copy
源码分析
源码中单独实现了加任何数(0~9)的私有方法,更为通用,对于末尾第一个数,可以将要加的数当做进位处理,这样就不必单独区分最后一位了,十分优雅!
复杂度分析
Java 中需要返回数组,而这个数组在处理之前是不知道大小的,故需要对最后一个进位单独处理。时间复杂度 , 空间复杂度在最后一位有进位时恶化为 , 当然也可以通过两次循环使得空间复杂度为 .
Reference
- Soulmachine 的 leetcode 题解,将要加的数当做进位处理就是从这学到的。