-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Gray Code
Question
- leetcode: Gray Code | LeetCode OJ
- lintcode: (411) Gray Code
Problem Statement
The gray code is a binary numeral system where two successive values differ in only one bit. Given a non-negative integer n representing the total number of bits in the code, find the sequence of gray code. A gray code sequence must begin with 0 and with cover all integers.
Example
Given n = 2
, return [0,1,3,2]
. Its gray code sequence is:
00 - 0
01 - 1
11 - 3
10 - 2
copy
Note
For a given n, a gray code sequence is not uniquely defined.
[0,2,3,1]
is also a valid gray code sequence according to the above definition.
Challenge
time.
题解
第一次遇到这个题是在腾讯的在线笔试中,当时找到了规律,用的是递归,但是实现似乎有点问题... 直接从 n 位的格雷码分析不太好分析,比如题中n = 2
的格雷码,我们不妨试试从小到大分析,以 n = 1
往后递推。
从图中我们可以看出n 位的格雷码可由 n-1位的格雷码递推,在最高位前顺序加0,逆序加1即可。实际实现时我们可以省掉在最高位加0的过程,因为其在数值上和前 n-1位格雷码相同。另外一点则是初始化的处理,图中为从1开始,但若从0开始可进一步简化程序。而且根据 格雷码 的定义,n=0时确实应该返回0.
Java
public class Solution {
/**
* @param n a number
* @return Gray code
*/
public ArrayList<Integer> grayCode(int n) {
if (n < 0) return null;
ArrayList<Integer> currGray = new ArrayList<Integer>();
currGray.add(0);
for (int i = 0; i < n; i++) {
int msb = 1 << i;
// backward - symmetry
for (int j = currGray.size() - 1; j >= 0; j--) {
currGray.add(msb | currGray.get(j));
}
}
return currGray;
}
}
copy
源码分析
加0 的那一部分已经在前一组格雷码中出现,故只需将前一组格雷码镜像后在最高位加1即可。第二重 for 循环中需要注意的是currGray.size() - 1
并不是常量,只能用于给 j 初始化。本应该使用 和上一组格雷码相加,这里考虑到最高位为1的特殊性,使用位运算模拟加法更好。
复杂度分析
生成n 位的二进制码,时间复杂度 , 使用了msb
代表最高位的值便于后续相加,空间复杂度 .
Reference
- Soulmachine 的 leetcode 题解