-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
3 Sum Closest
Question
- leetcode: 3Sum Closest | LeetCode OJ
- lintcode: (59) 3 Sum Closest
Given an array S of n integers, find three integers in S such that the sum is closest to a given number, target.
Return the sum of the three integers. You may assume that each input would have exactly one solution.
For example, given array S = {-1 2 1 -4}, and target = 1.
The sum that is closest to the target is 2. (-1 + 2 + 1 = 2).
copy
题解1 - 排序 + 2 Sum + 两根指针 + 优化过滤
和 3 Sum 的思路接近,首先对原数组排序,随后将3 Sum 的题拆解为『1 Sum + 2 Sum』的题,对于 Closest 的题使用两根指针而不是哈希表的方法较为方便。对于有序数组来说,在查找 Cloest 的值时其实是有较大的优化空间的。
Python
class Solution:
"""
@param numbers: Give an array numbers of n integer
@param target : An integer
@return : return the sum of the three integers, the sum closest target.
"""
def threeSumClosest(self, numbers, target):
result = 2**31 - 1
length = len(numbers)
if length < 3:
return result
numbers.sort()
larger_count = 0
for i, item_i in enumerate(numbers):
start = i + 1
end = length - 1
# optimization 1 - filter the smallest sum greater then target
if start < end:
sum3_smallest = numbers[start] + numbers[start + 1] + item_i
if sum3_smallest > target:
larger_count += 1
if larger_count > 1:
return result
while (start < end):
sum3 = numbers[start] + numbers[end] + item_i
if abs(sum3 - target) < abs(result - target):
result = sum3
# optimization 2 - filter the sum3 closest to target
sum_flag = 0
if sum3 > target:
end -= 1
if sum_flag == -1:
break
sum_flag = 1
elif sum3 < target:
start += 1
if sum_flag == 1:
break
sum_flag = -1
else:
return result
return result
copy
源码分析
- leetcode 上不让自己导入
sys
包,保险起见就初始化了result
为还算较大的数,作为异常的返回值。 - 对数组进行排序。
- 依次遍历排序后的数组,取出一个元素
item_i
后即转化为『2 Sum Cloest』问题。『2 Sum Cloest』的起始元素索引为i + 1
,之前的元素不能参与其中。 - 优化一——由于已经对原数组排序,故遍历原数组时比较最小的三个元素和
target
值,若第二次大于target
果断就此罢休,后面的值肯定越来越大。 - 两根指针求『2 Sum Cloest』,比较
sum3
和result
与target
的差值的绝对值,更新result
为较小的绝对值。 - 再度对『2 Sum Cloest』进行优化,仍然利用有序数组的特点,若处于『一大一小』的临界值时就可以马上退出了,后面的元素与
target
之差的绝对值只会越来越大。
复杂度分析
对原数组排序,平均时间复杂度为 , 两重for
循环,由于有两处优化,故最坏的时间复杂度才是 , 使用了result
作为临时值保存最接近target
的值,两处优化各使用了一个辅助变量,空间复杂度 .
C++
class Solution {
public:
int threeSumClosest(vector<int> &num, int target)
{
if (num.size() <= 3) return accumulate(num.begin(), num.end(), 0);
sort (num.begin(), num.end());
int result = 0, n = num.size(), temp;
result = num[0] + num[1] + num[2];
for (int i = 0; i < n - 2; ++i)
{
int j = i + 1, k = n - 1;
while (j < k)
{
temp = num[i] + num[j] + num[k];
if (abs(target - result) > abs(target - temp))
result = temp;
if (result == target)
return result;
( temp > target ) ? --k : ++j;
}
}
return result;
}
};
copy
源码分析
和前面3Sum解法相似,同理使用i,j,k三个指针进行循环。
区别在于3sum中的target为0,这里新增一个变量用于比较哪组数据与target更为相近
复杂度分析
时间复杂度同理为 运行时间 16ms