-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Find Minimum in Rotated Sorted Array
Question
- leetcode: Find Minimum in Rotated Sorted Array | LeetCode OJ
- lintcode: (159) Find Minimum in Rotated Sorted Array
Problem Statement
Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7
might become 4 5 6 7 0 1 2
).
Find the minimum element.
Example
Given [4, 5, 6, 7, 0, 1, 2]
return 0
Note
You may assume no duplicate exists in the array.
题解
如前节所述,对于旋转数组的分析可使用画图的方法,如下图所示,升序数组经旋转后可能为如下两种形式。
最小值可能在上图中的两种位置出现,如果仍然使用数组首部元素作为target去比较,则需要考虑图中右侧情况。使用逆向思维分析,如果使用数组尾部元素分析,则无需图中右侧的特殊情况。不过考虑在内的话也算是一种优化。
C++
class Solution {
public:
/**
* @param num: a rotated sorted array
* @return: the minimum number in the array
*/
int findMin(vector<int> &num) {
if (num.empty()) {
return -1;
}
vector<int>::size_type start = 0;
vector<int>::size_type end = num.size() - 1;
vector<int>::size_type mid;
while (start + 1 < end) {
mid = start + (end - start) / 2;
if (num[mid] < num[end]) {
end = mid;
} else {
start = mid;
}
}
if (num[start] < num[end]) {
return num[start];
} else {
return num[end];
}
}
};
copy
Java
public class Solution {
/**
* @param num: a rotated sorted array
* @return: the minimum number in the array
*/
public int findMin(int[] num) {
if (num == null || num.length == 0) return Integer.MIN_VALUE;
int lb = 0, ub = num.length - 1;
// case1: num[0] < num[num.length - 1]
// if (num[lb] < num[ub]) return num[lb];
// case2: num[0] > num[num.length - 1] or num[0] < num[num.length - 1]
while (lb + 1 < ub) {
int mid = lb + (ub - lb) / 2;
if (num[mid] < num[ub]) {
ub = mid;
} else {
lb = mid;
}
}
return Math.min(num[lb], num[ub]);
}
}
copy
源码分析
仅需注意使用num[end]
(使用 num[lb]不是那么直观)作为判断依据即可,由于题中已给无重复数组的条件,故无需处理num[mid] == num[end]
特殊条件。
复杂度分析
由于无重复元素,平均情况下复杂度为 .