-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Merge Two Sorted Lists
Question
- leetcode: Merge Two Sorted Lists | LeetCode OJ
- lintcode: (165) Merge Two Sorted Lists
Problem Statement
Merge two sorted (ascending) linked lists and return it as a new sorted list. The new sorted list should be made by splicing together the nodes of the two lists and sorted in ascending order.
Example
Given 1->3->8->11->15->null
, 2->null
, return 1->2->3->8->11->15->null
.
题解
此题为两个链表的合并,合并后的表头节点不一定,故应联想到使用dummy
节点。链表节点的插入主要涉及节点next
指针值的改变,两个链表的合并操作则涉及到两个节点的next
值变化,若每次合并一个节点都要改变两个节点next
的值且要对NULL
指针做异常处理,势必会异常麻烦。嗯,第一次做这个题时我就是这么想的... 下面看看相对较好的思路。
首先dummy
节点还是必须要用到,除了dummy
节点外还引入一个curr
节点充当下一次合并时的头节点。在l1
或者l2
的某一个节点为空指针NULL
时,退出while
循环,并将非空链表的头部链接到curr->next
中。
C++
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode* mergeTwoLists(ListNode* l1, ListNode* l2) {
ListNode *dummy = new ListNode(0);
ListNode *lastNode = dummy;
while ((NULL != l1) && (NULL != l2)) {
if (l1->val < l2->val) {
lastNode->next = l1;
l1 = l1->next;
} else {
lastNode->next = l2;
l2 = l2->next;
}
lastNode = lastNode->next;
}
// do not forget this line!
lastNode->next = (NULL != l1) ? l1 : l2;
return dummy->next;
}
};
copy
Java
/**
* Definition for ListNode.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int val) {
* this.val = val;
* this.next = null;
* }
* }
*/
public class Solution {
/**
* @param ListNode l1 is the head of the linked list
* @param ListNode l2 is the head of the linked list
* @return: ListNode head of linked list
*/
public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
ListNode dummy = new ListNode(0);
ListNode curr = dummy;
while ((l1 != null) && (l2 != null)) {
if (l1.val > l2.val) {
curr.next = l2;
l2 = l2.next;
} else {
curr.next = l1;
l1 = l1.next;
}
curr = curr.next;
}
// link to non-null list
curr.next = (l1 != null) ? l1 : l2;
return dummy.next;
}
}
copy
源码分析
- 异常处理,包含在
dummy->next
中。 - 引入
dummy
和curr
节点,此时curr
指向的节点为dummy
- 对非空l1,l2循环处理,将l1/l2的较小者链接到
curr->next
,往后递推curr
- 最后处理l1/l2中某一链表为空退出while循环,将非空链表头链接到
curr->next
- 返回
dummy->next
,即最终的首指针
注意curr
的递推并不影响dummy->next
的值,因为lastNode
和dummy
是两个不同的指针变量。
Note 链表的合并为常用操作,务必非常熟练,以上的模板非常精炼,有两个地方需要记牢。1. 循环结束条件中为条件与操作;2. 最后处理
curr->next
指针的值。
复杂度分析
最好情况下,一个链表为空,时间复杂度为 . 最坏情况下,curr
遍历两个链表中的每一个节点,时间复杂度为 . 空间复杂度近似为 .