-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Subarray Sum Closest
Question
- lintcode: (139) Subarray Sum Closest
Given an integer array, find a subarray with sum closest to zero.
Return the indexes of the first number and last number.
Example
Given [-3, 1, 1, -3, 5], return [0, 2], [1, 3], [1, 1], [2, 2] or [0, 4]
Challenge
O(nlogn) time
copy
题解
题 Zero Sum Subarray | Data Structure and Algorithm 的变形题,由于要求的子串和不一定,故哈希表的方法不再适用,使用解法4 - 排序即可在 内解决。具体步骤如下:
- 首先遍历一次数组求得子串和。
- 对子串和排序。
- 逐个比较相邻两项差值的绝对值,返回差值绝对值最小的两项。
C++
class Solution {
public:
/**
* @param nums: A list of integers
* @return: A list of integers includes the index of the first number
* and the index of the last number
*/
vector<int> subarraySumClosest(vector<int> nums){
vector<int> result;
if (nums.empty()) {
return result;
}
const int num_size = nums.size();
vector<pair<int, int> > sum_index(num_size + 1);
for (int i = 0; i < num_size; ++i) {
sum_index[i + 1].first = sum_index[i].first + nums[i];
sum_index[i + 1].second = i + 1;
}
sort(sum_index.begin(), sum_index.end());
int min_diff = INT_MAX;
int closest_index = 1;
for (int i = 1; i < num_size + 1; ++i) {
int sum_diff = abs(sum_index[i].first - sum_index[i - 1].first);
if (min_diff > sum_diff) {
min_diff = sum_diff;
closest_index = i;
}
}
int left_index = min(sum_index[closest_index - 1].second,\
sum_index[closest_index].second);
int right_index = -1 + max(sum_index[closest_index - 1].second,\
sum_index[closest_index].second);
result.push_back(left_index);
result.push_back(right_index);
return result;
}
};
copy
源码分析
为避免对单个子串和是否为最小情形的单独考虑,我们可以采取类似链表 dummy 节点的方法规避,简化代码实现。故初始化sum_index
时需要num_size + 1
个。这里为避免 vector 反复扩充空间降低运行效率,使用resize
一步到位。sum_index
即最后结果中left_index
和right_index
等边界可以结合简单例子分析确定。
复杂度分析
- 遍历一次求得子串和时间复杂度为 , 空间复杂度为 .
- 对子串和排序,平均时间复杂度为 .
- 遍历排序后的子串和数组,时间复杂度为 .
总的时间复杂度为 , 空间复杂度为 .