-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Two Strings Are Anagrams
Tags: String, Cracking The Coding Interview, Easy
Question
- leetcode: Valid Anagram
- lintcode: Two Strings Are Anagrams
Problem Statement
Write a method anagram(s,t)
to decide if two strings are anagrams or not.
Clarification
What is Anagram?
- Two strings are anagram if they can be the same after change the order of
characters.
Example
Given s = "abcd"
, t = "dcab"
, return true
.
Given s = "ab"
, t = "ab"
, return true
.
Given s = "ab"
, t = "ac"
, return false
.
Challenge ****
O(n) time, O(1) extra space
题解1 - hashmap 统计字频
判断两个字符串是否互为变位词,若区分大小写,考虑空白字符时,直接来理解可以认为两个字符串的拥有各不同字符的数量相同。对于比较字符数量的问题常用的方法为遍历两个字符串,统计其中各字符出现的频次,若不等则返回false
. 有很多简单字符串类面试题都是此题的变形题。
Python
class Solution:
"""
@param s: The first string
@param b: The second string
@return true or false
"""
def anagram(self, s, t):
return collections.Counter(s) == collections.Counter(t)
copy
C++
class Solution {
public:
/**
* @param s: The first string
* @param b: The second string
* @return true or false
*/
bool anagram(string s, string t) {
if (s.empty() || t.empty()) {
return false;
}
if (s.size() != t.size()) {
return false;
}
int letterCount[256] = {0};
for (int i = 0; i != s.size(); ++i) {
++letterCount[s[i]];
--letterCount[t[i]];
}
for (int i = 0; i != t.size(); ++i) {
if (letterCount[t[i]] != 0) {
return false;
}
}
return true;
}
};
copy
Java
public class Solution {
/**
* @param s: The first string
* @param b: The second string
* @return true or false
*/
public boolean anagram(String s, String t) {
if (s == null || t == null) return false;
if (s.length() != t.length()) return false;
final int CHAR_NUM = 256;
int[] letterCount = new int[CHAR_NUM];
for (int i = 0; i != s.length(); i++) {
letterCount[s.charAt(i)]++;
letterCount[t.charAt(i)]--;
}
for (int i = 0; i != CHAR_NUM; i++) {
if (letterCount[i] != 0) return false;
}
return true;
}
};
copy
源码分析
- 两个字符串长度不等时必不可能为变位词(需要注意题目条件灵活处理)。
- 初始化含有256个字符的计数器数组。
- 对字符串 s 自增,字符串 t 递减,再次遍历判断
letterCount
数组的值,小于0时返回false
.
在字符串长度较长(大于所有可能的字符数)时,还可对第二个for
循环做进一步优化,即t.size() > 256
时,使用256替代t.size()
直接比较字符计数, 使用i
替代t[i]
.
复杂度分析
两次遍历字符串,时间复杂度最坏情况下为 , 使用了额外的数组,空间复杂度 .
题解2 - 排序字符串
另一直接的解法是对字符串先排序,若排序后的字符串内容相同,则其互为变位词。
Python
class Solution:
"""
@param s: The first string
@param b: The second string
@return true or false
"""
def anagram(self, s, t):
return sorted(s) == sorted(t)
copy
C++
class Solution {
public:
/**
* @param s: The first string
* @param b: The second string
* @return true or false
*/
bool anagram(string s, string t) {
if (s.empty() || t.empty()) {
return false;
}
if (s.size() != t.size()) {
return false;
}
sort(s.begin(), s.end());
sort(t.begin(), t.end());
if (s == t) {
return true;
} else {
return false;
}
}
};
copy
Java
public class Solution {
/**
* @param s: The first string
* @param b: The second string
* @return true or false
*/
public boolean anagram(String s, String t) {
if (s == null || t == null) return false;
if (s.length() != t.length()) return false;
char[] sChars = s.toCharArray();
char[] tChars = t.toCharArray();
Arrays.sort(sChars);
Arrays.sort(tChars);
for (int i = 0; i != s.length(); i++) {
if (sChars[i] != tChars[i]) return false;
}
return true;
}
};
copy
源码分析
对字符串 s 和 t 分别排序,而后比较是否含相同内容。对字符串排序时可以采用先统计字频再组装成排序后的字符串,效率更高一点。
复杂度分析
C++的 STL 中 sort 的时间复杂度介于 和 之间,判断s == t
时间复杂度最坏为 . 可以看出此方法的时间复杂度相比题解1还是比较高的。Java 中字符串默认不可变,故空间复杂度为 .
Reference
- CC150 Chapter 9.1 中文版 p109