-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Minimum Window Substring
Question
- leetcode: Minimum Window Substring | LeetCode OJ
- lintcode: (32) Minimum Window Substring
Problem Statement
Given a string source and a string target, find the minimum window in source which will contain all the characters in target.
Example
source = "ADOBECODEBANC" target = "ABC" Minimum window is "BANC".
Note
If there is no such window in source that covers all characters in target, return the emtpy string "".
If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in source.
Challenge
Can you do it in time complexity O(n) ?
Clarification
Should the characters in minimum window has the same order in target?
- Not necessary.
题解
计算目标字符串的字符在给定字符串中出现的最小窗口。由于并不需要在给定字符串中有序出现,故只需要统计出现次数。这是典型的需要借助『哈希表』实现的题。题中字符串中的字符可以假定为 ascii 码,那么我们使用256个 ascii 码处理起来较为方便。那么接下来有两个难点,一就是在于怎么知道给定字符串中某一窗口长度已包含目标字符串中的全部字符(可能重复),二是在包含目标字符串中全部字符后如果再出现目标字符串中的其他字符串时如何处理?
其中第一个难点我们通过巧用目标字符串的长度来处理,遍历给定字符串,如果给定字符串中出现的字符次数小于目标字符串,我们就更新总的字符出现次数。第二个难题通过维护窗口起止索引(两根指针)来处理,在给定字符串中出现目标字符串中的全部字符时向前移动窗口起始处,若窗口长度小于之前的窗口长度则更新最终答案要求的窗口起始索引。
Java
public class Solution {
/**
* @param source: A string
* @param target: A string
* @return: A string denote the minimum window
* Return "" if there is no such a string
*/
public String minWindow(String source, String target) {
if (source == null || target == null) return "";
if (source.length() < target.length()) return "";
final int ASCII_COUNT = 256;
int[] targetCount = new int[ASCII_COUNT];
int[] sourceCount = new int[ASCII_COUNT];
for (int i = 0; i < target.length(); i++) {
int ch2i = (int)target.charAt(i);
targetCount[ch2i]++;
}
// target string character appeared in source string
int winStart = 0, winMinStart = 0, winMin = Integer.MAX_VALUE;
int occurence = 0;
for (int winEnd = 0; winEnd < source.length(); winEnd++) {
// convert character to integer
int ch2i = (int)source.charAt(winEnd);
sourceCount[ch2i]++;
// character occur in both source and target
if (targetCount[ch2i] > 0 && targetCount[ch2i] >= sourceCount[ch2i]) {
occurence++;
}
// adjust window size if all the target char occur in source
if (occurence == target.length()) {
// convert character to integer
int ch2i2 = (int)source.charAt(winStart);
while (sourceCount[ch2i2] > targetCount[ch2i2]) {
sourceCount[ch2i2]--;
winStart++;
ch2i2 = (int)source.charAt(winStart);
}
// update winMinStart
if (winMin > winEnd - winStart + 1) {
winMin = winEnd - winStart + 1;
winMinStart = winStart;
}
}
}
if (winMin == Integer.MAX_VALUE) {
return "";
} else {
return source.substring(winMinStart, winMinStart + winMin);
}
}
}
copy
源码分析
整个程序最为核心的即为题解中所提出的两大难点,窗口移动的方法使用贪心实现,在窗口长度变小时需要记录起始索引。
复杂度分析
遍历给定字符串一次,外加更新窗口时可能需要遍历给定字符串一次,时间复杂度为 , 使用了几个额外变量,空间复杂度 .