-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Validate Binary Search Tree
TAGS: TAG_Divide_and_Conquer TAG_Recursion TAG_Binary_Search_Tree TAG_Binary_Tree TAG_Medium
Question
- leetcode: Validate Binary Search Tree
- lintcode: Validate Binary Search Tree
Problem Statement
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
- A single node tree is a BST
Example
An example:
2
/ \
1 4
/ \
3 5
copy
The above binary tree is serialized as {2,1,4,#,#,3,5}
(in level order).
题解1 - recursion
按照题中对二叉搜索树所给的定义递归判断,我们从递归的两个步骤出发分析:
- 基本条件/终止条件 - 返回值需斟酌。
- 递归步/条件递归 - 能使原始问题收敛。
终止条件好确定——当前节点为空,或者不符合二叉搜索树的定义,返回值分别是什么呢?先别急,分析下递归步试试先。递归步的核心步骤为比较当前节点的key
和左右子节点的key
大小,和定义不符则返回false
, 否则递归处理。从这里可以看出在节点为空时应返回true
, 由上层的其他条件判断。但需要注意的是这里不仅要考虑根节点与当前的左右子节点,还需要考虑左子树中父节点的最小值和右子树中父节点的最大值。否则程序在[10,5,15,#,#,6,20]
这种 case 误判。
由于不仅需要考虑当前父节点,还需要考虑父节点的父节点... 故递归时需要引入上界和下界值。画图分析可知对于左子树我们需要比较父节点中最小值,对于右子树则是父节点中的最大值。又由于满足二叉搜索树的定义时,左子结点的值一定小于根节点,右子节点的值一定大于根节点,故无需比较所有父节点的值,使用递推即可得上界与下界,这里的实现非常巧妙。
C++ - long long
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root: The root of binary tree.
* @return: True if the binary tree is BST, or false
*/
bool isValidBST(TreeNode *root) {
if (root == NULL) return true;
return helper(root, LLONG_MIN, LLONG_MAX);
}
bool helper(TreeNode *root, long long lower, long long upper) {
if (root == NULL) return true;
if (root->val <= lower || root->val >= upper) return false;
bool isLeftValidBST = helper(root->left, lower, root->val);
bool isRightValidBST = helper(root->right, root->val, upper);
return isLeftValidBST && isRightValidBST;
}
};
copy
C++ - without long long
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root: The root of binary tree.
* @return: True if the binary tree is BST, or false
*/
bool isValidBST(TreeNode *root) {
if (root == NULL) return true;
return helper(root, INT_MIN, INT_MAX);
}
bool helper(TreeNode *root, int lower, int upper) {
if (root == NULL) return true;
if (root->val <= lower || root->val >= upper) {
bool right_max = root->val == INT_MAX && root->right == NULL;
bool left_min = root->val == INT_MIN && root->left == NULL;
if (!(right_max || left_min)) {
return false;
}
}
bool isLeftValidBST = helper(root->left, lower, root->val);
bool isRightValidBST = helper(root->right, root->val, upper);
return isLeftValidBST && isRightValidBST;
}
};
copy
Java
/**
* Definition of TreeNode:
* public class TreeNode {
* public int val;
* public TreeNode left, right;
* public TreeNode(int val) {
* this.val = val;
* this.left = this.right = null;
* }
* }
*/
public class Solution {
/**
* @param root: The root of binary tree.
* @return: True if the binary tree is BST, or false
*/
public boolean isValidBST(TreeNode root) {
if (root == null) return true;
return helper(root, Long.MIN_VALUE, Long.MAX_VALUE);
}
private boolean helper(TreeNode root, long lower, long upper) {
if (root == null) return true;
// System.out.println("root.val = " + root.val + ", lower = " + lower + ", upper = " + upper);
// left node value < root node value < right node value
if (root.val >= upper || root.val <= lower) return false;
boolean isLeftValidBST = helper(root.left, lower, root.val);
boolean isRightValidBST = helper(root.right, root.val, upper);
return isLeftValidBST && isRightValidBST;
}
}
copy
源码分析
为避免节点中出现整型的最大最小值,引入 long 型进行比较。有些 BST 的定义允许左子结点的值与根节点相同,此时需要更改比较条件为root.val > upper
. C++ 中 long 可能与 int 范围相同,故使用 long long. 如果不使用比 int 型更大的类型,那么就需要在相等时多加一些判断。
复杂度分析
递归遍历所有节点,时间复杂度为 , 使用了部分额外空间,空间复杂度为 .
题解2 - iteration
联想到二叉树的中序遍历。
Java
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isValidBST(TreeNode root) {
Deque<TreeNode> st = new ArrayDeque<>();
long pre = Long.MIN_VALUE;
// inorder traverse
while (root != null || !st.isEmpty()) {
if (root != null) {
st.push(root);
root = root.left;
}
else {
root = st.pop();
if (root.val > pre)
pre = root.val;
else
return false;
root = root.right;
}
}
return true;
}
}
copy
Reference
- LeetCode: Validate Binary Search Tree 解题报告 - Yu's Garden - 博客园 - 提供了4种不同的方法,思路可以参考。