-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Heap - 堆
一般情况下,堆通常指的是二叉堆,二叉堆是一个近似完全二叉树的数据结构,但由于对二叉树平衡及插入/删除操作较为麻烦,二叉堆实际上使用数组来实现。即物理结构为数组,逻辑结构为完全二叉树。子结点的键值或索引总是小于(或者大于)它的父节点,且每个节点的左右子树又是一个二叉堆(大根堆或者小根堆)。根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。常被用作实现优先队列。
特点
- 以数组表示,但是以完全二叉树的方式理解。
- 唯一能够同时最优地利用空间和时间的方法——最坏情况下也能保证使用 次比较和恒定的额外空间。
- 在索引从0开始的数组中:
- 父节点
i
的左子节点在位置(2*i+1)
- 父节点
i
的右子节点在位置(2*i+2)
- 子节点
i
的父节点在位置floor((i-1)/2)
堆的基本操作
以大根堆为例,堆的常用操作如下。
- 最大堆调整:将堆的末端子节点作调整,使得子节点永远小于父节点
- 创建最大堆:将堆所有数据重新排序
- 堆排序:移除位于第一个数据的根节点,并做最大堆调整的递归运算
其中步骤1是给步骤2和3用的。
堆实现
使用迭代实现也较为简单,注意索引值初始化和置位即可,尤其是记住最后一个索引的值 last,Java 的实现中 poll()
操作同时带有排序功能。
Python
class MaxHeap:
def __init__(self, array=None):
if array:
self.heap = self._max_heapify(array)
else:
self.heap = []
def _sink(self, array, i):
# move node down the tree
left, right = 2 * i + 1, 2 * i + 2
max_index = i
# should compare two chidren then determine which one to swap with
if left < len(array) and right < len(array):
flag = array[left] > array[right]
else:
flag = True
if left < len(array) and array[left] > array[max_index] and flag:
max_index = left
if right < len(array) and array[right] > array[max_index] and not flag:
max_index = right
if max_index != i:
array[i], array[max_index] = array[max_index], array[i]
self._sink(array, max_index)
def _swim(self, array, i):
# move node up the tree
if i == 0:
return
father = (i - 1) / 2
if array[father] < array[i]:
array[father], array[i] = array[i], array[father]
self._swim(array, father)
def _max_heapify(self, array):
for i in xrange(len(array) / 2, -1, -1):
self._sink(array, i)
return array
def push(self, item):
self.heap.append(item)
self._swim(self.heap, len(self.heap) - 1)
def pop(self):
self.heap[0], self.heap[-1] = self.heap[-1], self.heap[0]
item = self.heap.pop()
self._sink(self.heap, 0)
return item
copy
Java
import java.util.*;
/**
* Created by billryan on 29/7/2018.
*/
public class MaxHeap {
private final int MAX_N = 10;
private final int[] heap = new int[MAX_N];
private int last = 0;
public int getLast() {
return last;
}
public void push(int x) {
int i = last++;
while (i > 0) {
int p = (i - 1) / 2;
if (heap[p] >= x) {
break;
}
heap[i] = heap[p];
i = p;
}
heap[i] = x;
}
public int pop() {
int result = heap[0];
int x = heap[--last];
heap[last] = result;
int i = 0;
while (2 * i + 1 < last) {
int left = 2 * i + 1, right = 2 * i + 2, swap = left;
if (right < last && heap[left] < heap[right]) {
swap = right;
}
if (heap[swap] <= x) {
break;
}
heap[i] = heap[swap];
i = swap;
}
heap[i] = x;
return result;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("maxHeap: [");
for (int i = 0; i < last - 1; i++) {
sb.append(String.format("%d, ", heap[i]));
}
if (last > 0) {
sb.append(heap[last - 1]);
}
sb.append("]");
return sb.toString();
}
public static void main(String[] args) {
MaxHeap maxHeap = new MaxHeap();
int[] array = new int[]{6, 5, 3, 1, 8, 7, 2, 4, 10, 9};
for (int i : array) {
maxHeap.push(i);
System.out.println(maxHeap);
}
for (int i = maxHeap.getLast() - 1; i >= 0; i--) {
System.out.println("pop max heap value: " + maxHeap.pop());
System.out.println(maxHeap);
}
PriorityQueue<Integer> pq = new PriorityQueue<Integer>(10, Collections.reverseOrder());
for (int i : array) {
pq.offer(i);
System.out.println(pq);
}
// Top K problem
int k = 5;
for (int i = 0; i < k; i++) {
Integer topk = pq.poll();
if (topk != null) {
System.out.println("top " + (i + 1) + ": " + topk);
} else {
System.out.println("poll null value!!!");
}
}
}
}
copy
C++
#ifndef HEAP_H
#define HEAP_H
#include <algorithm>
#include <functional>
#include <stdexcept>
#include <unordered_map>
#include <utility>
#include <vector>
template <typename T, typename TComparator = std::equal_to<T>,
typename PComparator = std::less<double>,
typename Hasher = std::hash<T> >
class Heap {
public:
/// Constructs an m-ary heap. M should be >= 2
Heap(int m = 2, const PComparator &c = PComparator(),
const Hasher &hash = Hasher(), const TComparator &tcomp = TComparator());
/// Destructor as needed
~Heap();
/// Adds an item with the provided priority
void push(double pri, const T &item);
/// returns the element at the top of the heap
/// max (if max-heap) or min (if min-heap)
T const &top() const;
/// Removes the top element
void pop();
/// returns true if the heap is empty
bool empty() const;
/// decreaseKey reduces the current priority of
/// item to newpri, moving it up in the heap
/// as appropriate.
void decreaseKey(double newpri, const T &item);
private:
/// Add whatever helper functions you need below
void trickleUp(int loc);
void trickleDown(int loc);
// These should be all the data members you need.
std::vector<std::pair<double, T> > store_;
int m_; // degree
PComparator c_;
std::unordered_map<T, size_t, Hasher, TComparator> keyToLocation_;
};
// Complete
template <typename T, typename TComparator, typename PComparator,
typename Hasher>
Heap<T, TComparator, PComparator, Hasher>::Heap(int m, const PComparator &c,
const Hasher &hash,
const TComparator &tcomp)
: store_(), m_(m), c_(c), keyToLocation_(100, hash, tcomp) {
}
// Complete
template <typename T, typename TComparator, typename PComparator,
typename Hasher>
Heap<T, TComparator, PComparator, Hasher>::~Heap() {
}
template <typename T, typename TComparator, typename PComparator,
typename Hasher>
void Heap<T, TComparator, PComparator, Hasher>::push(double priority,
const T &item) {
// You complete.
std::pair<double, T> temp(priority, item);
store_.push_back(temp);
keyToLocation_[item] = store_.size();
// insert(std::make_pair(item, store_.size()));
trickleUp(store_.size()-1);
}
template <typename T, typename TComparator, typename PComparator,
typename Hasher>
void Heap<T, TComparator, PComparator, Hasher>::trickleUp(int loc) {
int parent = (loc-1)/m_;
while(parent >= 0 && c_(store_[loc].first, store_[parent].first)) {
//swap loc with parent
std::pair<double, T> temp = store_[loc];
store_[loc] = store_[parent];
store_[parent] = temp;
double to_swap = keyToLocation_[store_[loc].second];
keyToLocation_[store_[loc].second] = keyToLocation_[store_[parent].second];
keyToLocation_[store_[parent].second] = to_swap;
loc = parent;
parent = (loc-1)/m_;
}
}
template <typename T, typename TComparator, typename PComparator,
typename Hasher>
void Heap<T, TComparator, PComparator, Hasher>::decreaseKey(double priority,
const T &item) {
std::pair<double, T> temp = store_[keyToLocation_[item]];
temp.first = priority;
trickleUp(keyToLocation_[item]);
}
template <typename T, typename TComparator, typename PComparator,
typename Hasher>
T const &Heap<T, TComparator, PComparator, Hasher>::top() const {
// Here we use exceptions to handle the case of trying
// to access the top element of an empty heap
if (empty()) {
throw std::logic_error("can't top an empty heap");
}
return store_[0].second;
}
/// Removes the top element
template <typename T, typename TComparator, typename PComparator,
typename Hasher>
void Heap<T, TComparator, PComparator, Hasher>::pop() {
if (empty()) {
throw std::logic_error("can't pop an empty heap");
}
store_[0] = store_[store_.size()-1];
keyToLocation_.erase(store_[0].second);
store_.pop_back();
if(empty()) return;
trickleDown(0);
}
template <typename T, typename TComparator, typename PComparator,
typename Hasher>
void Heap<T, TComparator, PComparator, Hasher>::trickleDown(int loc) {
if (loc*m_+1 > store_.size()-1) return;
int smallerChild = m_*loc+1; // start w/ left
for (size_t i = 1; i < m_; i++) {
if (m_*loc+i < store_.size()) {//if the right exist
int rChild = m_*loc+i+1;
if(c_(store_[rChild].first, store_[smallerChild].first)) {
smallerChild = rChild;
}
}
}
if(c_(store_[smallerChild].first, store_[loc].first)) {
//swap smallerChild and loc
std::pair<double, T> temp = store_[loc];
store_[loc] = store_[smallerChild];
store_[smallerChild] = temp;
double to_swap = keyToLocation_[store_[loc].second];
keyToLocation_[store_[loc].second] = keyToLocation_[store_[smallerChild].second];
keyToLocation_[store_[smallerChild].second] = to_swap;
trickleDown(smallerChild);
}
}
/// returns true if the heap is empty
template <typename T, typename TComparator, typename PComparator,
typename Hasher>
bool Heap<T, TComparator, PComparator, Hasher>::empty() const {
return store_.empty();
}
#endif
copy