-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Remove Nth Node From End of List
Problem
Metadata
- tags: Linked List, Two Pointers
- difficulty: Easy
- source(lintcode): https://www.lintcode.com/problem/remove-nth-node-from-end-of-list/
- source(leetcode): https://leetcode.com/problems/remove-nth-node-from-end-of-list/
Description
Given a linked list, remove the nth node from the end of list and return its head.
Notice
The minimum number of nodes in list is n.
Example
Given linked list: 1->2->3->4->5->null
, and n = 2
.
After removing the second node from the end, the linked list becomes 1->2->3->5->null
.
Challenge
Can you do it without getting the length of the linked list?
题解
简单题,使用快慢指针解决此题,需要注意最后删除的是否为头节点。让快指针先走n
步,直至快指针走到终点,找到需要删除节点之前的一个节点,改变node->next
域即可。见基础数据结构部分的链表解析。
C++
/**
* Definition of ListNode
* class ListNode {
* public:
* int val;
* ListNode *next;
* ListNode(int val) {
* this->val = val;
* this->next = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param head: The first node of linked list.
* @param n: An integer.
* @return: The head of linked list.
*/
ListNode *removeNthFromEnd(ListNode *head, int n) {
if (NULL == head || n < 1) {
return head;
}
ListNode dummy(0);
dummy.next = head;
ListNode *preDel = dummy;
for (int i = 0; i != n; ++i) {
if (NULL == head) {
return NULL;
}
head = head->next;
}
while (head) {
head = head->next;
preDel = preDel->next;
}
preDel->next = preDel->next->next;
return dummy.next;
}
};
copy
Java
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode removeNthFromEnd(ListNode head, int n) {
if (head == nul) return head;
ListNode dummy = new ListNode(0);
dummy.next = head;
ListNode fast = head;
ListNode slow = dummy;
for (int i = 0; i < n; i++) {
fast = fast.next;
}
while(fast != null) {
fast = fast.next;
slow = slow.next;
}
// gc friendly
// ListNode toBeDeleted = slow.next;
slow.next = slow.next.next;
// toBeDeleted.next = null;
// toBeDeleted = null;
return dummy.next;
}
}
copy
源码分析
引入dummy
节点后画个图分析下就能确定head
和preDel
的转移关系了。 注意 while 循环中和快慢指针初始化的关系,否则容易在顺序上错一。
复杂度分析
极限情况下遍历两遍链表,时间复杂度为 .