-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Recover Rotated Sorted Array
Question
- lintcode: (39) Recover Rotated Sorted Array
Given a rotated sorted array, recover it to sorted array in-place.
Example
[4, 5, 1, 2, 3] -> [1, 2, 3, 4, 5]
Challenge
In-place, O(1) extra space and O(n) time.
Clarification
What is rotated array:
- For example, the orginal array is [1,2,3,4], The rotated array of it can be [1,2,3,4], [2,3,4,1], [3,4,1,2], [4,1,2,3]
copy
首先可以想到逐步移位,但是这种方法显然太浪费时间,不可取。下面介绍利器『三步翻转法』,以[4, 5, 1, 2, 3]
为例。
- 首先找到分割点
5
和1
- 翻转前半部分
4, 5
为5, 4
,后半部分1, 2, 3
翻转为3, 2, 1
。整个数组目前变为[5, 4, 3, 2, 1]
- 最后整体翻转即可得
[1, 2, 3, 4, 5]
由以上3个步骤可知其核心为『翻转』的in-place实现。使用两个指针,一个指头,一个指尾,使用for循环移位交换即可。
Java
public class Solution {
/**
* @param nums: The rotated sorted array
* @return: The recovered sorted array
*/
public void recoverRotatedSortedArray(ArrayList<Integer> nums) {
if (nums == null || nums.size() <= 1) {
return;
}
int pos = 1;
while (pos < nums.size()) { // find the break point
if (nums.get(pos - 1) > nums.get(pos)) {
break;
}
pos++;
}
myRotate(nums, 0, pos - 1);
myRotate(nums, pos, nums.size() - 1);
myRotate(nums, 0, nums.size() - 1);
}
private void myRotate(ArrayList<Integer> nums, int left, int right) { // in-place rotate
while (left < right) {
int temp = nums.get(left);
nums.set(left, nums.get(right));
nums.set(right, temp);
left++;
right--;
}
}
}
copy
C++
/**
* forked from
* http://www.jiuzhang.com/solutions/recover-rotated-sorted-array/
*/
class Solution {
private:
void reverse(vector<int> &nums, vector<int>::size_type start, vector<int>::size_type end) {
for (vector<int>::size_type i = start, j = end; i < j; ++i, --j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}
public:
void recoverRotatedSortedArray(vector<int> &nums) {
for (vector<int>::size_type index = 0; index != nums.size() - 1; ++index) {
if (nums[index] > nums[index + 1]) {
reverse(nums, 0, index);
reverse(nums, index + 1, nums.size() - 1);
reverse(nums, 0, nums.size() - 1);
return;
}
}
}
};
copy
源码分析
首先找到分割点,随后分三步调用翻转函数。简单起见可将vector<int>::size_type
替换为int