-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Combination Sum II
Question
- leetcode: Combination Sum II | LeetCode OJ
- lintcode: (153) Combination Sum II
Given a collection of candidate numbers (C) and a target number (T),
find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Have you met this question in a real interview? Yes
Example
For example, given candidate set 10,1,6,7,2,1,5 and target 8,
A solution set is:
[1,7]
[1,2,5]
[2,6]
[1,1,6]
Note
All numbers (including target) will be positive integers.
Elements in a combination (a1, a2, … , ak) must be in non-descending order.
(ie, a1 ≤ a2 ≤ … ≤ ak).
The solution set must not contain duplicate combinations.
copy
题解
和 Unique Subsets 非常类似。在 Combination Sum 的基础上改改就好了。
Java
public class Solution {
/**
* @param num: Given the candidate numbers
* @param target: Given the target number
* @return: All the combinations that sum to target
*/
public List<List<Integer>> combinationSum2(int[] num, int target) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
List<Integer> list = new ArrayList<Integer>();
if (num == null) return result;
Arrays.sort(num);
helper(num, 0, target, list, result);
return result;
}
private void helper(int[] nums, int pos, int gap,
List<Integer> list, List<List<Integer>> result) {
if (gap == 0) {
result.add(new ArrayList<Integer>(list));
return;
}
for (int i = pos; i < nums.length; i++) {
// ensure only the first same num is chosen, remove duplicate list
if (i != pos && nums[i] == nums[i - 1]) {
continue;
}
// cut invalid num
if (gap < nums[i]) {
return;
}
list.add(nums[i]);
// i + 1 ==> only be used once
helper(nums, i + 1, gap - nums[i], list, result);
list.remove(list.size() - 1);
}
}
}
copy
源码分析
这里去重的方法继承了 Unique Subsets 中的做法,当然也可以新建一变量 prev
,由于这里每个数最多只能使用一次,故递归时索引变量传i + 1
.
复杂度分析
时间复杂度 , 空间复杂度 .