-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Maximum Subarray
Question
- leetcode: Maximum Subarray | LeetCode OJ
- lintcode: (41) Maximum Subarray
Given an array of integers,
find a contiguous subarray which has the largest sum.
Example
Given the array [−2,2,−3,4,−1,2,1,−5,3],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.
Note
The subarray should contain at least one number.
Challenge
Can you do it in time complexity O(n)?
copy
题解1 - 贪心
求最大子数组和,即求区间和的最大值,不同子区间共有约 中可能,遍历虽然可解,但是时间复杂度颇高。
这里首先介绍一种巧妙的贪心算法,用sum
表示当前子数组和,maxSum
表示求得的最大子数组和。当sum <= 0
时,累加数组中的元素只会使得到的和更小,故此时应将此部分和丢弃,使用此时遍历到的数组元素替代。需要注意的是由于有maxSum
更新sum
, 故直接丢弃小于0的sum
并不会对最终结果有影响。即不会漏掉前面的和比后面的元素大的情况。
Java
public class Solution {
/**
* @param nums: A list of integers
* @return: A integer indicate the sum of max subarray
*/
public int maxSubArray(ArrayList<Integer> nums) {
// -1 is not proper for illegal input
if (nums == null || nums.isEmpty()) return -1;
int sum = 0, maxSub = Integer.MIN_VALUE;
for (int num : nums) {
// drop negtive sum
sum = Math.max(sum, 0);
sum += num;
// update maxSub
maxSub = Math.max(maxSub, sum);
}
return maxSub;
}
}
copy
源码分析
贪心的实现较为巧妙,需要sum
和maxSub
配合运作才能正常工作。
复杂度分析
遍历一次数组,时间复杂度 , 使用了几个额外变量,空间复杂度 .
题解2 - 动态规划1(区间和)
求最大/最小这种字眼往往都可以使用动态规划求解,此题为单序列动态规划。我们可以先求出到索引 i 的子数组和,然后用子数组和的最大值减去最小值,最后返回最大值即可。用这种动态规划需要注意初始化条件和求和顺序。
Java
public class Solution {
/**
* @param nums: A list of integers
* @return: A integer indicate the sum of max subarray
*/
public int maxSubArray(ArrayList<Integer> nums) {
// -1 is not proper for illegal input
if (nums == null || nums.isEmpty()) return -1;
int sum = 0, minSum = 0, maxSub = Integer.MIN_VALUE;
for (int num : nums) {
minSum = Math.min(minSum, sum);
sum += num;
maxSub = Math.max(maxSub, sum - minSum);
}
return maxSub;
}
}
copy
源码分析
首先求得当前的最小子数组和,初始化为0,随后比较子数组和减掉最小子数组和的差值和最大区间和,并更新最大区间和。
复杂度分析
时间复杂度 , 使用了类似滚动数组的处理方式,空间复杂度 .
题解3 - 动态规划2(局部与全局)
这种动规的实现和题解1 的思想几乎一模一样,只不过这里用局部最大值和全局最大值两个数组来表示。
Java
public class Solution {
/**
* @param nums: A list of integers
* @return: A integer indicate the sum of max subarray
*/
public int maxSubArray(ArrayList<Integer> nums) {
// -1 is not proper for illegal input
if (nums == null || nums.isEmpty()) return -1;
int size = nums.size();
int[] local = new int[size];
int[] global = new int[size];
local[0] = nums.get(0);
global[0] = nums.get(0);
for (int i = 1; i < size; i++) {
// drop local[i - 1] < 0
local[i] = Math.max(nums.get(i), local[i - 1] + nums.get(i));
// update global with local
global[i] = Math.max(global[i - 1], local[i]);
}
return global[size - 1];
}
}
copy
源码分析
由于局部最大值需要根据之前的局部值是否大于0进行更新,故方便起见初始化 local 和 global 数组的第一个元素为数组第一个元素。
复杂度分析
时间复杂度 , 空间复杂度也为 .
Reference
- 《剑指 Offer》第五章
- Maximum Subarray 参考程序 Java/C++/Python