-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Word Break
- tags: [DP_Sequence]
Question
- leetcode: Word Break | LeetCode OJ
- lintcode: (107) Word Break
Given a string s and a dictionary of words dict, determine if s can be
segmented into a space-separated sequence of one or more dictionary words.
For example, given
s = "leetcode",
dict = ["leet", "code"].
Return true because "leetcode" can be segmented as "leet code".
copy
题解
单序列(DP_Sequence) DP 题,由单序列动态规划的四要素可大致写出:
- State:
f[i]
表示前i
个字符能否根据词典中的词被成功分词。 - Function:
f[i] = or{f[j], j < i, letter in [j+1, i] can be found in dict}
, 含义为小于i
的索引j
中只要有一个f[j]
为真且j+1
到i
中组成的字符能在词典中找到时,f[i]
即为真,否则为假。具体实现可分为自顶向下或者自底向上。 - Initialization:
f[0] = true
, 数组长度为字符串长度 + 1,便于处理。 - Answer:
f[s.length]
考虑到单词长度通常不会太长,故在s
较长时使用自底向上效率更高。
Python
class Solution:
# @param s, a string
# @param wordDict, a set<string>
# @return a boolean
def wordBreak(self, s, wordDict):
if not s:
return True
if not wordDict:
return False
max_word_len = max([len(w) for w in wordDict])
can_break = [True]
for i in xrange(len(s)):
can_break.append(False)
for j in xrange(i, -1, -1):
# optimize for too long interval
if i - j + 1 > max_word_len:
break
if can_break[j] and s[j:i + 1] in wordDict:
can_break[i + 1] = True
break
return can_break[-1]
copy
C++
class Solution {
public:
bool wordBreak(string s, unordered_set<string>& wordDict) {
if (s.empty()) return true;
if (wordDict.empty()) return false;
// get the max word length of wordDict
int max_word_len = 0;
for (unordered_set<string>::iterator it = wordDict.begin();
it != wordDict.end(); ++it) {
max_word_len = max(max_word_len, (*it).size());
}
vector<bool> can_break(s.size() + 1, false);
can_break[0] = true;
for (int i = 1; i <= s.size(); ++i) {
for (int j = i - 1; j >= 0; --j) {
// optimize for too long interval
if (i - j > max_word_len) break;
if (can_break[j] &&
wordDict.find(s.substr(j, i - j)) != wordDict.end()) {
can_break[i] = true;
break;
}
}
}
return can_break[s.size()];
}
};
copy
Java
public class Solution {
public boolean wordBreak(String s, Set<String> wordDict) {
if (s == null || s.length() == 0) return true;
if (wordDict == null || wordDict.isEmpty()) return false;
// get the max word length of wordDict
int max_word_len = 0;
for (String word : wordDict) {
max_word_len = Math.max(max_word_len, word.length());
}
boolean[] can_break = new boolean[s.length() + 1];
can_break[0] = true;
for (int i = 1; i <= s.length(); i++) {
for (int j = i - 1; j >= 0; j--) {
// optimize for too long interval
if (i - j > max_word_len) break;
String word = s.substring(j, i);
if (can_break[j] && wordDict.contains(word)) {
can_break[i] = true;
break;
}
}
}
return can_break[s.length()];
}
}
copy
源码分析
Python 之类的动态语言无需初始化指定大小的数组,使用时下标i
比 C++和 Java 版的程序少1。使用自底向上的方法求解状态转移,首先遍历一次词典求得单词最大长度以便后续优化。
复杂度分析
- 求解词典中最大单词长度,时间复杂度为词典长度乘上最大单词长度
- 词典中找单词的时间复杂度为 (哈希表结构)
- 两重 for 循环,内循环在超出最大单词长度时退出,故最坏情况下两重 for 循环的时间复杂度为 .
- 故总的时间复杂度近似为 .
- 使用了与字符串长度几乎等长的布尔数组和临时单词
word
,空间复杂度近似为 .