-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Matrix Zigzag Traversal
Question
- lintcode: (185) Matrix Zigzag Traversal
Given a matrix of m x n elements (m rows, n columns),
return all elements of the matrix in ZigZag-order.
Example
Given a matrix:
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9,10, 11, 12]
]
return [1, 2, 5, 9, 6, 3, 4, 7, 10, 11, 8, 12]
copy
题解
按之字形遍历矩阵,纯粹找下标规律。以题中所给范例为例,设(x, y)
为矩阵坐标,按之字形遍历有如下规律:
(0, 0)
(0, 1), (1, 0)
(2, 0), (1, 1), (0, 2)
(0, 3), (1, 2), (2, 1)
(2, 2), (1, 3)
(2, 3)
copy
可以发现其中每一行的坐标之和为常数,坐标和为奇数时 x 递增,为偶数时 x 递减。
Java - valid matrix index second
public class Solution {
/**
* @param matrix: a matrix of integers
* @return: an array of integers
*/
public int[] printZMatrix(int[][] matrix) {
if (matrix == null || matrix.length == 0) return null;
int m = matrix.length - 1, n = matrix[0].length - 1;
int[] result = new int[(m + 1) * (n + 1)];
int index = 0;
for (int i = 0; i <= m + n; i++) {
if (i % 2 == 0) {
for (int x = i; x >= 0; x--) {
// valid matrix index
if ((x <= m) && (i - x <= n)) {
result[index] = matrix[x][i - x];
index++;
}
}
} else {
for (int x = 0; x <= i; x++) {
if ((x <= m) && (i - x <= n)) {
result[index] = matrix[x][i - x];
index++;
}
}
}
}
return result;
}
}
copy
Java - valid matrix index first
public class Solution {
/**
* @param matrix: a matrix of integers
* @return: an array of integers
*/
public int[] printZMatrix(int[][] matrix) {
if (matrix == null || matrix.length == 0) return null;
int m = matrix.length - 1, n = matrix[0].length - 1;
int[] result = new int[(m + 1) * (n + 1)];
int index = 0;
for (int i = 0; i <= m + n; i++) {
int upperBoundx = Math.min(i, m); // x <= m
int lowerBoundx = Math.max(0, i - n); // lower bound i - x(y) <= n
int upperBoundy = Math.min(i, n); // y <= n
int lowerBoundy = Math.max(0, i - m); // i - y(x) <= m
if (i % 2 == 0) {
// column increment
for (int y = lowerBoundy; y <= upperBoundy; y++) {
result[index] = matrix[i - y][y];
index++;
}
} else {
// row increment
for (int x = lowerBoundx; x <= upperBoundx; x++) {
result[index] = matrix[x][i - x];
index++;
}
}
}
return result;
}
}
copy
源码分析
矩阵行列和分奇偶讨论,奇数时行递增,偶数时列递增,一种是先循环再判断索引是否合法,另一种是先取的索引边界。
复杂度分析
后判断索引是否合法的实现遍历次数为 , 首先确定上下界的每个元素遍历一次,时间复杂度 . 空间复杂度都是 .