-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Zero Sum Subarray
Question
- lintcode: (138) Subarray Sum
- GeeksforGeeks: Find if there is a subarray with 0 sum - GeeksforGeeks
Given an integer array, find a subarray where the sum of numbers is zero.
Your code should return the index of the first number and the index of the last number.
Example
Given [-3, 1, 2, -3, 4], return [0, 2] or [1, 3].
Note
There is at least one subarray that it's sum equals to zero.
copy
题解1 - 两重 for 循环
题目中仅要求返回一个子串(连续)中和为0的索引,而不必返回所有可能满足题意的解。最简单的想法是遍历所有子串,判断其和是否为0,使用两重循环即可搞定,最坏情况下时间复杂度为 , 这种方法显然是极其低效的,极有可能会出现 TLE. 下面就不浪费篇幅贴代码了。
题解2 - 比较子串和(TLE)
两重 for 循环显然是我们不希望看到的解法,那么我们再来分析下题意,题目中的对象是分析子串和,那么我们先从常见的对数组求和出发, 表示从数组下标 0 开始至下标 i 的和。子串和为0,也就意味着存在不同的 和 使得 , 等价于 . 思路很快就明晰了,使用一 vector 保存数组中从 0 开始到索引i
的和,在将值 push 进 vector 之前先检查 vector 中是否已经存在,若存在则将相应索引加入最终结果并返回。
C++
class Solution {
public:
/**
* @param nums: A list of integers
* @return: A list of integers includes the index of the first number
* and the index of the last number
*/
vector<int> subarraySum(vector<int> nums){
vector<int> result;
int curr_sum = 0;
vector<int> sum_i;
for (int i = 0; i != nums.size(); ++i) {
curr_sum += nums[i];
if (0 == curr_sum) {
result.push_back(0);
result.push_back(i);
return result;
}
vector<int>::iterator iter = find(sum_i.begin(), sum_i.end(), curr_sum);
if (iter != sum_i.end()) {
result.push_back(iter - sum_i.begin() + 1);
result.push_back(i);
return result;
}
sum_i.push_back(curr_sum);
}
return result;
}
};
copy
源码分析
使用curr_sum
保存到索引i
处的累加和,sum_i
保存不同索引处的和。执行sum_i.push_back
之前先检查curr_sum
是否为0,再检查curr_sum
是否已经存在于sum_i
中。是不是觉得这种方法会比题解1好?错!时间复杂度是一样一样的!根本原因在于find
操作的时间复杂度为线性。与这种方法类似的有哈希表实现,哈希表的查找在理想情况下可认为是 .
复杂度分析
最坏情况下 , 实测和题解1中的方法运行时间几乎一致。
题解3 - 哈希表
终于到了祭出万能方法时候了,题解2可以认为是哈希表的雏形,而哈希表利用空间换时间的思路争取到了宝贵的时间资源 :)
C++
class Solution {
public:
/**
* @param nums: A list of integers
* @return: A list of integers includes the index of the first number
* and the index of the last number
*/
vector<int> subarraySum(vector<int> nums){
vector<int> result;
// curr_sum for the first item, index for the second item
map<int, int> hash;
hash[0] = 0;
int curr_sum = 0;
for (int i = 0; i != nums.size(); ++i) {
curr_sum += nums[i];
if (hash.find(curr_sum) != hash.end()) {
result.push_back(hash[curr_sum]);
result.push_back(i);
return result;
} else {
hash[curr_sum] = i + 1;
}
}
return result;
}
};
copy
源码分析
为了将curr_sum == 0
的情况也考虑在内,初始化哈希表后即赋予 <0, 0>
. 给 hash
赋值时使用i + 1
, push_back
时则不必再加1.
由于 C++ 中的map
采用红黑树实现,故其并非真正的「哈希表」,C++ 11中引入的unordered_map
用作哈希表效率更高,实测可由1300ms 降至1000ms.
复杂度分析
遍历求和时间复杂度为 , 哈希表检查键值时间复杂度为 , 其中 为哈希表长度。如果采用unordered_map
实现,最坏情况下查找的时间复杂度为线性,最好为常数级别。
题解4 - 排序
除了使用哈希表,我们还可使用排序的方法找到两个子串和相等的情况。这种方法的时间复杂度主要集中在排序方法的实现。由于除了记录子串和之外还需记录索引,故引入pair
记录索引,最后排序时先按照sum
值来排序,然后再按照索引值排序。如果需要自定义排序规则可参考[^sort_pair_second].
C++
class Solution {
public:
/**
* @param nums: A list of integers
* @return: A list of integers includes the index of the first number
* and the index of the last number
*/
vector<int> subarraySum(vector<int> nums){
vector<int> result;
if (nums.empty()) {
return result;
}
const int num_size = nums.size();
vector<pair<int, int> > sum_index(num_size + 1);
for (int i = 0; i != num_size; ++i) {
sum_index[i + 1].first = sum_index[i].first + nums[i];
sum_index[i + 1].second = i + 1;
}
sort(sum_index.begin(), sum_index.end());
for (int i = 1; i < num_size + 1; ++i) {
if (sum_index[i].first == sum_index[i - 1].first) {
result.push_back(sum_index[i - 1].second);
result.push_back(sum_index[i].second - 1);
return result;
}
}
return result;
}
};
copy
源码分析
没啥好分析的,注意好边界条件即可。这里采用了链表中常用的「dummy」节点方法,pair
排序后即为我们需要的排序结果。这种排序的方法需要先求得所有子串和然后再排序,最后还需要遍历排序后的数组,效率自然是比不上哈希表。但是在某些情况下这种方法有一定优势。
复杂度分析
遍历求子串和,时间复杂度为 , 空间复杂度 . 排序时间复杂度近似 , 遍历一次最坏情况下时间复杂度为 . 总的时间复杂度可近似为 . 空间复杂度 .
扩展
这道题的要求是找到一个即可,但是要找出所有满足要求的解呢?Stackoverflow 上有这道延伸题的讨论[^stackoverflow].
另一道扩展题来自 Google 的面试题 - Find subarray with given sum - GeeksforGeeks.
Reference
- [^stackoverflow]: algorithm - Zero sum SubArray - Stack Overflow
- [^sort_pair_second]: c++ - How do I sort a vector of pairs based on the second element of the pair? - Stack Overflow