-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Invert Binary Tree
Question
- leetcode: Invert Binary Tree | LeetCode OJ
- lintcode: (175) Invert Binary Tree
Invert a binary tree.
Example
1 1
/ \ / \
2 3 => 3 2
/ \
4 4
Challenge
Do it in recursion is acceptable, can you do it without recursion?
copy
题解1 - Recursive
二叉树的题用递归的思想求解自然是最容易的,此题要求为交换左右子节点,故递归交换之即可。具体实现可分返回值为空或者二叉树节点两种情况,返回值为节点的情况理解起来相对不那么直观一些。
C++ - return void
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* };
*/
class Solution {
public:
/**
* @param root: a TreeNode, the root of the binary tree
* @return: nothing
*/
void invertBinaryTree(TreeNode *root) {
if (root == NULL) return;
TreeNode *temp = root->left;
root->left = root->right;
root->right = temp;
invertBinaryTree(root->left);
invertBinaryTree(root->right);
}
};
copy
C++ - return TreeNode *
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if (root == NULL) return NULL;
TreeNode *temp = root->left;
root->left = invertTree(root->right);
root->right = invertTree(temp);
return root;
}
};
copy
源码分析
分三块实现,首先是节点为空的情况,然后使用临时变量交换左右节点,最后递归调用,递归调用的正确性可通过画图理解。
复杂度分析
每个节点遍历一次,时间复杂度为 , 使用了临时变量,空间复杂度为 .
题解2 - Iterative
递归的实现非常简单,那么非递归的如何实现呢?如果将递归改写成栈的实现,那么简单来讲就需要两个栈了,稍显复杂。其实仔细观察此题可发现使用 level-order 的遍历次序也可实现。即从根节点开始入队,交换左右节点,并将非空的左右子节点入队,从队列中取出节点,交换之,直至队列为空。
C++
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* };
*/
class Solution {
public:
/**
* @param root: a TreeNode, the root of the binary tree
* @return: nothing
*/
void invertBinaryTree(TreeNode *root) {
if (root == NULL) return;
queue<TreeNode*> q;
q.push(root);
while (!q.empty()) {
// pop out the front node
TreeNode *node = q.front();
q.pop();
// swap between left and right pointer
swap(node->left, node->right);
// push non-NULL node
if (node->left != NULL) q.push(node->left);
if (node->right != NULL) q.push(node->right);
}
}
};
copy
源码分析
交换左右指针后需要判断子节点是否非空,仅入队非空子节点。
复杂度分析
遍历每一个节点,时间复杂度为 , 使用了队列,最多存储最下一层子节点数目,最多只有总节点数的一半,故最坏情况下 .