-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Wildcard Matching
Question
- leetcode: Wildcard Matching | LeetCode OJ
- lintcode: (192) Wildcard Matching
Implement wildcard pattern matching with support for '?' and '*'.
'?' Matches any single character.
'*' Matches any sequence of characters (including the empty sequence).
The matching should cover the entire input string (not partial).
Example
isMatch("aa","a") → false
isMatch("aa","aa") → true
isMatch("aaa","aa") → false
isMatch("aa", "*") → true
isMatch("aa", "a*") → true
isMatch("ab", "?*") → true
isMatch("aab", "c*a*b") → false
copy
题解1 - DFS
字符串的通配实现。'?
'表示匹配单一字符,'*
'可匹配任意多字符串(包含零个)。要匹配的字符串设为s
, 模式匹配用的字符串设为p
,那么如果是普通字符,两个字符串索引向前推进一位即可,如果p
中的字符是?
也好办,同上处理,向前推进一位。所以现在的关键就在于如何处理'*
', 因为*
可匹配0, 1, 2...个字符,所以遇到*
时,s
应该尽可能的向前推进,注意到p
中*
后面可能跟有其他普通字符,故s
向前推进多少位直接与p
中*
后面的字符相关。同时此时两个字符串的索引处即成为回溯点,如果后面的字符串匹配不成功,则s
中的索引向前推进,向前推进的字符串即表示和p
中*
匹配的字符个数。
Java
public class Solution {
/**
* @param s: A string
* @param p: A string includes "?" and "*"
* @return: A boolean
*/
public boolean isMatch(String s, String p) {
if (s == null || p == null) return false;
if (s.length() == 0|| p.length() == 0) return false;
return helper(s, 0, p, 0);
}
private boolean helper(String s, int si, String p, int pj) {
// index out of range check
if (si == s.length() || pj == p.length()) {
if (si == s.length() && pj == p.length()) {
return true;
} else {
return false;
}
}
if (p.charAt(pj) == '*') {
// remove coninuous *
while (p.charAt(pj) == '*') {
pj++;
// index out of range check
if (pj == p.length()) return true;
}
// compare remaining part of p after * with s
while (si < s.length() && !helper(s, si, p, pj)) {
si++;
}
// substring of p equals to s
return si != s.length();
} else if (s.charAt(si) == p.charAt(pj) || p.charAt(pj) == '?') {
return helper(s, si + 1, p, pj + 1);
} else {
return false;
}
}
}
copy
源码分析
其中对*
的处理和递归回溯是这段代码的精华。
复杂度分析
最坏情况下需要不断回溯,时间复杂度 , 空间复杂度 (不含栈空间)。
题解2
C++
bool isMatch(string s, string p) {
int star = 0, ss = 0, i = 0, j = 0;
while (s[i]) {
if (p[j] == '?' || p[j] == s[i]) {j++; i++; continue;}
if (p[j] == '*') {star = ++j; ss = i; continue;}
if (star) {j = star; i = ++ss; continue;}
return false;
}
while (p[j] == '*') j++;
return !p[j];
}
copy
Reference
- Soulmachine 的 leetcode 题解
- 题解2的出处