-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Jump Game II
Question
- lintcode: (117) Jump Game II
Given an array of non-negative integers,
you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Your goal is to reach the last index in the minimum number of jumps.
Example
Given array A = [2,3,1,1,4]
The minimum number of jumps to reach the last index is 2.
(Jump 1 step from index 0 to 1, then 3 steps to the last index.)
copy
题解(自顶向下-动态规划)
首先来看看使用动态规划的解法,由于复杂度较高在A元素较多时会出现TLE,因为时间复杂度接近 . 工作面试中给出动规的实现就挺好了。
- State: f[i] 从起点跳到这个位置最少需要多少步
- Function: f[i] = MIN(f[j]+1, j < i && j + A[j] >= i) 取出所有能从j到i中的最小值
- Initialization: f[0] = 0,即一个元素时不需移位即可到达
- Answer: f[n-1]
C++ Dynamic Programming
class Solution {
public:
/**
* @param A: A list of lists of integers
* @return: An integer
*/
int jump(vector<int> A) {
if (A.empty()) {
return -1;
}
const int N = A.size() - 1;
vector<int> steps(N, INT_MAX);
steps[0] = 0;
for (int i = 1; i != N + 1; ++i) {
for (int j = 0; j != i; ++j) {
if ((steps[j] != INT_MAX) && (j + A[j] >= i)) {
steps[i] = steps[j] + 1;
break;
}
}
}
return steps[N];
}
};
copy
源码分析
状态转移方程为
if ((steps[j] != INT_MAX) && (j + A[j] >= i)) {
steps[i] = steps[j] + 1;
break;
}
copy
其中break即体现了MIN操作,最开始满足条件的j即为最小步数。
题解(贪心法-自底向上)
使用动态规划解Jump Game的题复杂度均较高,这里可以使用贪心法达到线性级别的复杂度。
贪心法可以使用自底向上或者自顶向下,首先看看我最初使用自底向上做的。对A数组遍历,找到最小的下标min_index
,并在下一轮中用此min_index
替代上一次的end
, 直至min_index
为0,返回最小跳数jumps
。以下的实现有个 bug,细心的你能发现吗?
C++ greedy from bottom to top, bug version
class Solution {
public:
/**
* @param A: A list of lists of integers
* @return: An integer
*/
int jump(vector<int> A) {
if (A.empty()) {
return -1;
}
const int N = A.size() - 1;
int jumps = 0;
int last_index = N;
int min_index = N;
for (int i = N - 1; i >= 0; --i) {
if (i + A[i] >= last_index) {
min_index = i;
}
if (0 == min_index) {
return ++jumps;
}
if ((0 == i) && (min_index < last_index)) {
++jumps;
last_index = min_index;
i = last_index - 1;
}
}
return jumps;
}
};
copy
源码分析
使用jumps记录最小跳数,last_index记录离终点最远的坐标,min_index记录此次遍历过程中找到的最小下标。
以上的bug在于当min_index为1时,i = 0, for循环中仍有--i,因此退出循环,无法进入if (0 == min_index)
语句,因此返回的结果会小1个。
C++ greedy, from bottom to top
class Solution {
public:
/**
* @param A: A list of lists of integers
* @return: An integer
*/
int jump(vector<int> A) {
if (A.empty()) {
return 0;
}
const int N = A.size() - 1;
int jumps = 0, end = N, min_index = N;
while (end > 0) {
for (int i = end - 1; i >= 0; --i) {
if (i + A[i] >= end) {
min_index = i;
}
}
if (min_index < end) {
++jumps;
end = min_index;
} else {
// cannot jump to the end
return -1;
}
}
return jumps;
}
};
copy
源码分析
之前的 bug version 代码实在是太丑陋了,改写了个相对优雅的实现,加入了是否能到达终点的判断。在更新min_index
的内循环中也可改为如下效率更高的方式:
for (int i = 0; i != end; ++i) {
if (i + A[i] >= end) {
min_index = i;
break;
}
}
copy
题解(贪心法-自顶向下)
看过了自底向上的贪心法,我们再来瞅瞅自顶向下的实现。自顶向下使用farthest
记录当前坐标出发能到达的最远坐标,遍历当前start
与end
之间的坐标,若i+A[i] > farthest
时更新farthest
(寻找最小跳数),当前循环遍历结束时递推end = farthest
。end >= A.size() - 1
时退出循环,返回最小跳数。
C++
/**
* http://www.jiuzhang.com/solutions/jump-game-ii/
*/
class Solution {
public:
/**
* @param A: A list of lists of integers
* @return: An integer
*/
int jump(vector<int> A) {
if (A.empty()) {
return 0;
}
const int N = A.size() - 1;
int start = 0, end = 0, jumps = 0;
while (end < N) {
int farthest = end;
for (int i = start; i <= end; ++i) {
if (i + A[i] >= farthest) {
farthest = i + A[i];
}
}
if (end < farthest) {
++jumps;
start = end + 1;
end = farthest;
} else {
// cannot jump to the end
return -1;
}
}
return jumps;
}
};
copy