-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Best Time to Buy and Sell Stock III
Question
- leetcode: Best Time to Buy and Sell Stock III | LeetCode OJ
- lintcode: (151) Best Time to Buy and Sell Stock III
Say you have an array for
which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit.
You may complete at most two transactions.
Example
Given an example [4,4,6,1,1,4,2,5], return 6.
Note
You may not engage in multiple transactions at the same time
(ie, you must sell the stock before you buy again).
copy
题解
与前两道允许一次或者多次交易不同,这里只允许最多两次交易,且这两次交易不能交叉。咋一看似乎无从下手,我最开始想到的是找到排在前2个的波谷波峰,计算这两个差值之和。原理上来讲应该是可行的,但是需要记录 个波谷波峰并对其排序,实现起来也比较繁琐。
除了以上这种直接分析问题的方法外,是否还可以借助分治的思想解决呢?最多允许两次不相交的交易,也就意味着这两次交易间存在某一分界线,考虑到可只交易一次,也可交易零次,故分界线的变化范围为第一天至最后一天,只需考虑分界线两边各自的最大利润,最后选出利润和最大的即可。
这种方法抽象之后则为首先将 [1,n] 拆分为 [1,i] 和 [i+1,n], 参考卖股票系列的第一题计算各自区间内的最大利润即可。[1,i] 区间的最大利润很好算,但是如何计算 [i+1,n] 区间的最大利润值呢?难道需要重复 n 次才能得到?注意到区间的右侧 n 是个不变值,我们从 [1, i] 计算最大利润是更新波谷的值,那么我们可否逆序计算最大利润呢?这时候就需要更新记录波峰的值了。逆向思维大法好!Talk is cheap, show me the code!
Python
class Solution:
"""
@param prices: Given an integer array
@return: Maximum profit
"""
def maxProfit(self, prices):
if prices is None or len(prices) <= 1:
return 0
n = len(prices)
# get profit in the front of prices
profit_front = [0] * n
valley = prices[0]
for i in xrange(1, n):
profit_front[i] = max(profit_front[i - 1], prices[i] - valley)
valley = min(valley, prices[i])
# get profit in the back of prices, (i, n)
profit_back = [0] * n
peak = prices[-1]
for i in xrange(n - 2, -1, -1):
profit_back[i] = max(profit_back[i + 1], peak - prices[i])
peak = max(peak, prices[i])
# add the profit front and back
profit = 0
for i in xrange(n):
profit = max(profit, profit_front[i] + profit_back[i])
return profit
copy
C++
class Solution {
public:
/**
* @param prices: Given an integer array
* @return: Maximum profit
*/
int maxProfit(vector<int> &prices) {
if (prices.size() <= 1) return 0;
int n = prices.size();
// get profit in the front of prices
vector<int> profit_front = vector<int>(n, 0);
for (int i = 1, valley = prices[0]; i < n; ++i) {
profit_front[i] = max(profit_front[i - 1], prices[i] - valley);
valley = min(valley, prices[i]);
}
// get profit in the back of prices, (i, n)
vector<int> profit_back = vector<int>(n, 0);
for (int i = n - 2, peak = prices[n - 1]; i >= 0; --i) {
profit_back[i] = max(profit_back[i + 1], peak - prices[i]);
peak = max(peak, prices[i]);
}
// add the profit front and back
int profit = 0;
for (int i = 0; i < n; ++i) {
profit = max(profit, profit_front[i] + profit_back[i]);
}
return profit;
}
};
copy
Java
class Solution {
/**
* @param prices: Given an integer array
* @return: Maximum profit
*/
public int maxProfit(int[] prices) {
if (prices == null || prices.length <= 1) return 0;
// get profit in the front of prices
int[] profitFront = new int[prices.length];
profitFront[0] = 0;
for (int i = 1, valley = prices[0]; i < prices.length; i++) {
profitFront[i] = Math.max(profitFront[i - 1], prices[i] - valley);
valley = Math.min(valley, prices[i]);
}
// get profit in the back of prices, (i, n)
int[] profitBack = new int[prices.length];
profitBack[prices.length - 1] = 0;
for (int i = prices.length - 2, peak = prices[prices.length - 1]; i >= 0; i--) {
profitBack[i] = Math.max(profitBack[i + 1], peak - prices[i]);
peak = Math.max(peak, prices[i]);
}
// add the profit front and back
int profit = 0;
for (int i = 0; i < prices.length; i++) {
profit = Math.max(profit, profitFront[i] + profitBack[i]);
}
return profit;
}
};
copy
源码分析
整体分为三大部分,计算前半部分的最大利润值,然后计算后半部分的最大利润值,最后遍历得到最终的最大利润值。
复杂度分析
三次遍历原数组,时间复杂度为 , 利用了若干和数组等长的数组,空间复杂度也为 .
Reference
- soulmachine 的卖股票系列