-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Permutation Sequence
Question
- leetcode: Permutation Sequence | LeetCode OJ
- lintcode: (388) Permutation Sequence
Problem Statement
Given n and k, return the k-th permutation sequence.
Example
For n = 3
, all permutations are listed as follows:
"123"
"132"
"213"
"231"
"312"
"321"
copy
If k = 4
, the fourth permutation is "231"
Note
n will be between 1 and 9 inclusive.
Challenge
O(n*k) in time complexity is easy, can you do it in O(n^2) or less?
题解
和题 Permutation Index 正好相反,这里给定第几个排列的相对排名,输出排列值。和不同进制之间的转化类似,这里的『进制』为1!, 2!...
, 以n=3, k=4为例,我们从高位到低位转化,直觉应该是用 k/(n-1)!
, 但以 n=3,k=5 和 n=3,k=6 代入计算后发现边界处理起来不太方便,故我们可以尝试将 k 减1进行运算,后面的基准也随之变化。第一个数可以通过(k-1)/(n-1)!
进行计算,那么第二个数呢?联想不同进制数之间的转化,我们可以通过求模运算求得下一个数的k-1
, 那么下一个数可通过(k2 - 1)/(n-2)!
求得,这里不理解的可以通过进制转换类比进行理解。和减掉相应的阶乘值是等价的。
Python
class Solution:
"""
@param n: n
@param k: the k-th permutation
@return: a string, the k-th permutation
"""
def getPermutation(self, n, k):
# generate factorial list
factorial = [1]
for i in xrange(1, n + 1):
factorial.append(factorial[-1] * i)
nums = range(1, n + 1)
perm = []
for i in xrange(n):
rank = (k - 1) / factorial[n - i - 1]
k = (k - 1) % factorial[n - i - 1] + 1
# append and remove nums[rank]
perm.append(nums[rank])
nums.remove(nums[rank])
# combine digits
return "".join([str(digit) for digit in perm])
copy
C++
class Solution {
public:
/**
* @param n: n
* @param k: the kth permutation
* @return: return the k-th permutation
*/
string getPermutation(int n, int k) {
// generate factorial list
vector<int> factorial = vector<int>(n + 1, 1);
for (int i = 1; i < n + 1; ++i) {
factorial[i] = factorial[i - 1] * i;
}
// generate digits ranging from 1 to n
vector<int> nums;
for (int i = 1; i < n + 1; ++i) {
nums.push_back(i);
}
vector<int> perm;
for (int i = 0; i < n; ++i) {
int rank = (k - 1) / factorial[n - i - 1];
k = (k - 1) % factorial[n - i - 1] + 1;
// append and remove nums[rank]
perm.push_back(nums[rank]);
nums.erase(std::remove(nums.begin(), nums.end(), nums[rank]), nums.end());
}
// transform a vector<int> to a string
std::stringstream result;
std::copy(perm.begin(), perm.end(), std::ostream_iterator<int>(result, ""));
return result.str();
}
};
copy
Java
class Solution {
/**
* @param n: n
* @param k: the kth permutation
* @return: return the k-th permutation
*/
public String getPermutation(int n, int k) {
if (n <= 0 && k <= 0) return "";
int fact = 1;
// generate nums 1 to n
List<Integer> nums = new ArrayList<Integer>();
for (int i = 1; i <= n; i++) {
fact *= i;
nums.add(i);
}
// get the permutation digit
StringBuilder sb = new StringBuilder();
for (int i = n; i >= 1; i--) {
fact /= i;
// take care of rank and k
int rank = (k - 1) / fact;
k = (k - 1) % fact + 1;
// ajust the mapping of rank to num
sb.append(nums.get(rank));
nums.remove(rank);
}
return sb.toString();
}
}
copy
源码分析
源码结构分为三步走,
- 建阶乘数组
- 生成排列数字数组
- 从高位到低位计算排列数值
复杂度分析
几个 for 循环,时间复杂度为 , 用了与 n 等长的一些数组,空间复杂度为 .