-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Next Permutation
Question
- leetcode: Next Permutation | LeetCode OJ
- lintcode: (52) Next Permutation
Problem Statement
Given a list of integers, which denote a permutation.
Find the next permutation in ascending order.
Example
For [1,3,2,3]
, the next permutation is [1,3,3,2]
For [4,3,2,1]
, the next permutation is [1,2,3,4]
Note
The list may contains duplicate integers.
题解
找下一个升序排列,C++ STL 源码剖析一书中有提及,Permutations 一小节中也有详细介绍,下面简要介绍一下字典序算法:
- 从后往前寻找索引满足
a[k] < a[k + 1]
, 如果此条件不满足,则说明已遍历到最后一个。 - 从后往前遍历,找到第一个比
a[k]
大的数a[l]
, 即a[k] < a[l]
. - 交换
a[k]
与a[l]
. - 反转
k + 1 ~ n
之间的元素。
由于这道题中规定对于[4,3,2,1]
, 输出为[1,2,3,4]
, 故在第一步稍加处理即可。
Python
class Solution(object):
def nextPermutation(self, nums):
"""
:type nums: List[int]
:rtype: void Do not return anything, modify nums in-place instead.
"""
if nums is None or len(nums) <= 1:
return
# step1: find nums[i] < nums[i + 1], Loop backwards
i = 0
for i in xrange(len(nums) - 2, -1, -1):
if nums[i] < nums[i + 1]:
break
elif i == 0:
# reverse nums if reach maximum
nums = nums.reverse()
return
# step2: find nums[i] < nums[j], Loop backwards
j = 0
for j in xrange(len(nums) - 1, i, -1):
if nums[i] < nums[j]:
break
# step3: swap betwenn nums[i] and nums[j]
nums[i], nums[j] = nums[j], nums[i]
# step4: reverse between [i + 1, n - 1]
nums[i + 1:len(nums)] = nums[len(nums) - 1:i:-1]
copy
C++
class Solution {
public:
/**
* @param nums: An array of integers
* @return: An array of integers that's next permuation
*/
vector<int> nextPermutation(vector<int> &nums) {
if (nums.empty() || nums.size() <= 1) {
return nums;
}
// step1: find nums[i] < nums[i + 1]
int i = 0;
for (i = nums.size() - 2; i >= 0; --i) {
if (nums[i] < nums[i + 1]) {
break;
} else if (0 == i) {
// reverse nums if reach maximum
reverse(nums, 0, nums.size() - 1);
return nums;
}
}
// step2: find nums[i] < nums[j]
int j = 0;
for (j = nums.size() - 1; j > i; --j) {
if (nums[i] < nums[j]) break;
}
// step3: swap betwenn nums[i] and nums[j]
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
// step4: reverse between [i + 1, n - 1]
reverse(nums, i + 1, nums.size() - 1);
return nums;
}
private:
void reverse(vector<int>& nums, int start, int end) {
for (int i = start, j = end; i < j; ++i, --j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}
};
copy
Java
public class Solution {
/**
* @param nums: an array of integers
* @return: return nothing (void), do not return anything, modify nums in-place instead
*/
public void nextPermutation(int[] nums) {
if (nums == null || nums.length == 0) return;
// step1: search the first nums[k] < nums[k+1] backward
int k = -1;
for (int i = nums.length - 2; i >= 0; i--) {
if (nums[i] < nums[i + 1]) {
k = i;
break;
}
}
// if current rank is the largest, reverse it to smallest, return
if (k == -1) {
reverse(nums, 0, nums.length - 1);
return;
}
// step2: search the first nums[k] < nums[l] backward
int l = nums.length - 1;
while (l > k && nums[l] <= nums[k]) l--;
// step3: swap nums[k] with nums[l]
int temp = nums[k];
nums[k] = nums[l];
nums[l] = temp;
// step4: reverse between k+1 and nums.length-1;
reverse(nums, k + 1, nums.length - 1);
}
private void reverse(int[] nums, int lb, int ub) {
for (int i = lb, j = ub; i < j; i++, j--) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}
}
copy
源码分析
和 Permutation 一小节类似,这里只需要注意在step 1中i == -1
时需要反转之以获得最小的序列。对于有重复元素,只要在 step1和 step2中判断元素大小时不取等号即可。Lintcode 上给的注释要求(其实是 Leetcode 上的要求)和实际给出的输出不一样。
复杂度分析
最坏情况下,遍历两次原数组,反转一次数组,时间复杂度为 , 使用了 temp 临时变量,空间复杂度可认为是 .