-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Partition Array
Question
- lintcode: (31) Partition Array
Problem Statement
Given an array nums
of integers and an int k
, partition the array (i.e
move the elements in "nums") such that:
- All elements < k are moved to the left
- All elements >= k are moved to the right
Return the partitioning index, i.e the first index i nums[i] >= k.
Example
If nums = [3,2,2,1]
and k=2
, a valid answer is 1
.
Note
You should do really partition in array nums instead of just counting the numbers of integers smaller than k.
If all elements in nums are smaller than k, then return nums.length
Challenge
Can you partition the array in-place and in O(n)?
题解1 - 自左向右
容易想到的一个办法是自左向右遍历,使用right
保存大于等于 k 的索引,i
则为当前遍历元素的索引,总是保持i >= right
, 那么最后返回的right
即为所求。
C++
class Solution {
public:
int partitionArray(vector<int> &nums, int k) {
int right = 0;
const int size = nums.size();
for (int i = 0; i < size; ++i) {
if (nums[i] < k) {
if (i != right) {
int temp = nums[i];
nums[i] = nums[right];
nums[right] = temp;
}
++right;
}
}
return right;
}
};
copy
源码分析
自左向右遍历,遇到小于 k 的元素时即和right
索引处元素交换,并自增right
指向下一个元素,这样就能保证right
之前的元素一定小于 k.
复杂度分析
遍历一次数组,时间复杂度最少为 , 可能需要一定次数的交换。
题解2 - 两根指针
有了解过 Quick Sort 的做这道题自然是分分钟的事,使用左右两根指针 分别代表小于、大于等于 k 的索引,左右同时开工,直至 .
C++
class Solution {
public:
int partitionArray(vector<int> &nums, int k) {
int left = 0, right = nums.size() - 1;
while (left <= right) {
while (left <= right && nums[left] < k) ++left;
while (left <= right && nums[right] >= k) --right;
if (left <= right) {
int temp = nums[left];
nums[left] = nums[right];
nums[right] = temp;
++left;
--right;
}
}
return left;
}
};
copy
源码分析
大循环能正常进行的条件为 , 对于左边索引,向右搜索直到找到小于 k 的索引为止;对于右边索引,则向左搜索直到找到大于等于 k 的索引为止。注意在使用while
循环时务必进行越界检查!
找到不满足条件的索引时即交换其值,并递增left
, 递减right
. 紧接着进行下一次循环。最后返回left
即可,当nums
为空时包含在left = 0
之中,不必单独特殊考虑,所以应返回left
而不是right
.
复杂度分析
只需要对整个数组遍历一次,时间复杂度为 , 相比题解1,题解2对全小于 k 的数组效率较高,元素交换次数较少。