-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Insert Interval
Question
- leetcode: Insert Interval | LeetCode OJ
- lintcode: (30) Insert Interval
Given a non-overlapping interval list which is sorted by start point.
Insert a new interval into it,
make sure the list is still in order and non-overlapping
(merge intervals if necessary).
Example
Insert [2, 5] into [[1,2], [5,9]], we get [[1,9]].
Insert [3, 4] into [[1,2], [5,9]], we get [[1,2], [3,4], [5,9]].
copy
题解
这道题看似简单,但其实实现起来不那么容易,因为若按照常规思路,需要分很多种情况考虑,如半边相等的情况。以返回新数组为例,首先,遍历原数组肯定是必须的,以[N]
代表newInterval
, [I]
代表当前遍历到的interval
, 那么有以下几种情况:
[N], [I]
<==>newInterval.end < interval.start
, 由于 intervals 中的间隔数组已经为升序排列,那么遍历到的下一个间隔的左边元素必然也大于新间隔的右边元素。[NI]
<==>newInterval.end == interval.start
,这种情况下需要进行合并操作。[IN]
<==>newInterval.start == interval.end
, 这种情况下也需要进行合并。[I], [N]
<==>newInterval.start > interval.end
, 这意味着newInterval
有可能在此处插入,也有可能在其后面的间隔插入。故遍历时需要在这种情况下做一些标记以确定最终插入位置。
由于间隔都是互不重叠的,故其关系只可能为以上四种中的某几个。1和4两种情况很好处理,关键在于2和3的处理。由于2和3这种情况都将生成新的间隔,且这种情况一旦发生,原来的newInterval
即被新的合并间隔取代,这是一个非常关键的突破口。
Java
/**
* Definition of Interval:
* public classs Interval {
* int start, end;
* Interval(int start, int end) {
* this.start = start;
* this.end = end;
* }
*/
class Solution {
/**
* Insert newInterval into intervals.
* @param intervals: Sorted interval list.
* @param newInterval: A new interval.
* @return: A new sorted interval list.
*/
public ArrayList<Interval> insert(ArrayList<Interval> intervals, Interval newInterval) {
ArrayList<Interval> result = new ArrayList<Interval>();
if (intervals == null || intervals.isEmpty()) {
if (newInterval != null) {
result.add(newInterval);
}
return result;
}
int insertPos = 0;
for (Interval interval : intervals) {
if (newInterval.end < interval.start) {
// case 1: [new], [old]
result.add(interval);
} else if (interval.end < newInterval.start) {
// case 2: [old], [new]
result.add(interval);
insertPos++;
} else {
// case 3, 4: [old, new] or [new, old]
newInterval.start = Math.min(newInterval.start, interval.start);
newInterval.end = Math.max(newInterval.end, interval.end);
}
}
result.add(insertPos, newInterval);
return result;
}
}
copy
源码分析
源码的精华在case 3 和 case 4的处理,case 2用于确定最终新间隔的插入位置。
之所以不在 case 1立即返回,有两点考虑:一是代码的复杂性(需要用到 addAll 添加数组部分元素);二是case2, case3, case 4有可能正好遍历到数组的最后一个元素,如果在 case 1就返回的话还需要单独做一判断。
复杂度分析
遍历一次,时间复杂度 . 不考虑作为结果返回占用的空间 result, 空间复杂度 .