-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Wood Cut
Question
- lintcode: (183) Wood Cut
Problem Statement
Given n pieces of wood with length L[i]
(integer array). Cut them into small
pieces to guarantee you could have equal or more than k pieces with the same
length. What is the longest length you can get from the n pieces of wood?
Given L & k, return the maximum length of the small pieces.
Example
For L=[232, 124, 456]
, k=7
, return 114
.
Note
You couldn't cut wood into float length.
Challenge
O(n log Len), where Len is the longest length of the wood.
题解 - 二分搜索
这道题要直接想到二分搜素其实不容易,但是看到题中 Challenge 的提示后你大概就能想到往二分搜索上靠了。首先来分析下题意,题目意思是说给出 n 段木材L[i]
, 将这 n 段木材切分为至少 k 段,这 k 段等长,求能从 n 段原材料中获得的最长单段木材长度。以 k=7 为例,要将 L 中的原材料分为7段,能得到的最大单段长度为114, 232/114 = 2, 124/114 = 1, 456/114 = 4, 2 + 1 + 4 = 7.
理清题意后我们就来想想如何用算法的形式表示出来,显然在计算如2
, 1
, 4
等分片数时我们进行了取整运算,在计算机中则可以使用下式表示:
其中 为单段最大长度,显然有 . 单段长度最小为1,最大不可能超过给定原材料中的最大木材长度。
Warning 注意求和与取整的顺序,是先求
L[i]/l
的单个值,而不是先对L[i]
求和。
分析到这里就和题 Sqrt x 差不多一样了,要求的是 的最大可能取值,同时 可以看做是从有序序列[1, max(L[i])]
的一个元素,典型的二分搜素!
P.S. 关于二分搜索总结在 Binary Search 一小节,直接套用『模板二——最优化』即可。
Python
class Solution:
"""
@param L: Given n pieces of wood with length L[i]
@param k: An integer
return: The maximum length of the small pieces.
"""
def woodCut(self, L, k):
if sum(L) < k:
return 0
start, end = 1, max(L)
while start + 1 < end:
mid = (start + end) / 2
pieces_sum = sum(len_i / mid for len_i in L)
if pieces_sum < k:
end = mid
else:
start = mid
if sum(len_i / end for len_i in L) >= k:
return end
return start
copy
C++
class Solution {
public:
/**
*@param L: Given n pieces of wood with length L[i]
*@param k: An integer
*return: The maximum length of the small pieces.
*/
int woodCut(vector<int> L, int k) {
// write your code here
int lb = 0, ub = 0;
for (auto l : L) if (l + 1 > ub) ub = l + 1;
while (lb + 1 < ub) {
int mid = lb + (ub - lb) / 2;
if (C(L, k, mid)) lb = mid;
else ub = mid;
}
return lb;
}
int C(vector<int> L, int k, int mid) {
int sum = 0;
for (auto l : L) {
sum += l / mid;
}
return sum >= k;
}
};
copy
Java
public class Solution {
/**
*@param L: Given n pieces of wood with length L[i]
*@param k: An integer
*return: The maximum length of the small pieces.
*/
public int woodCut(int[] L, int k) {
if (L == null || L.length == 0) return 0;
int lb = 0, ub = Integer.MIN_VALUE;
// get the upper bound of L
for (int l : L) if (l > ub) ub = l + 1;
while (lb + 1 < ub) {
int mid = lb + (ub - lb) / 2;
if (C(L, k, mid)) {
lb = mid;
} else {
ub = mid;
}
}
return lb;
}
// whether it cut with length x and get more than k pieces
private boolean C(int[] L, int k, int x) {
int sum = 0;
for (int l : L) {
sum += l / x;
}
return sum >= k;
}
}
copy
源码分析
定义私有方法C
为切分为 x 长度时能否大于等于 k 段。若满足条件则更新lb
, 由于 lb 和 ub 的初始化技巧使得我们无需单独对最后的 lb 和 ub 单独求和判断。九章算法网站上的方法初始化为1和某最大值,还需要单独判断,虽然不会出bug, 但稍显复杂。这个时候lb, ub初始化为两端不满足条件的值的优雅之处就体现出来了。
复杂度分析
遍历求和时间复杂度为 , 二分搜索时间复杂度为 . 故总的时间复杂度为 . 空间复杂度 .