-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Partition List
Question
- leetcode: Partition List | LeetCode OJ
- lintcode: (96) Partition List
Problem Statement
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of the nodes in each of the two partitions.
For example,
Given 1->4->3->2->5->2
and x = 3,
return 1->2->2->4->3->5
.
题解
此题出自 CTCI 题 2.4,依据题意,是要根据值x对链表进行分割操作,具体是指将所有小于x的节点放到不小于x的节点之前,咋一看和快速排序的分割有些类似,但是这个题的不同之处在于只要求将小于x的节点放到前面,而并不要求对元素进行排序。
这种分割的题使用两路指针即可轻松解决。左边指针指向小于x的节点,右边指针指向不小于x的节点。由于左右头节点不确定,我们可以使用两个dummy节点。
Python
"""
Definition of ListNode
class ListNode(object):
def __init__(self, val, next=None):
self.val = val
self.next = next
"""
class Solution:
"""
@param head: The first node of linked list.
@param x: an integer
@return: a ListNode
"""
def partition(self, head, x):
if head is None:
return None
leftDummy = ListNode(0)
left = leftDummy
rightDummy = ListNode(0)
right = rightDummy
node = head
while node is not None:
if node.val < x:
left.next = node
left = left.next
else:
right.next = node
right = right.next
node = node.next
# post-processing
right.next = None
left.next = rightDummy.next
return leftDummy.next
copy
C++
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode* partition(ListNode* head, int x) {
if (head == NULL) return NULL;
ListNode *leftDummy = new ListNode(0);
ListNode *left = leftDummy;
ListNode *rightDummy = new ListNode(0);
ListNode *right = rightDummy;
ListNode *node = head;
while (node != NULL) {
if (node->val < x) {
left->next = node;
left = left->next;
} else {
right->next = node;
right = right->next;
}
node = node->next;
}
// post-processing
right->next = NULL;
left->next = rightDummy->next;
return leftDummy->next;
}
};
copy
Java
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
public class Solution {
public ListNode partition(ListNode head, int x) {
ListNode leftDummy = new ListNode(0);
ListNode leftCurr = leftDummy;
ListNode rightDummy = new ListNode(0);
ListNode rightCurr = rightDummy;
ListNode runner = head;
while (runner != null) {
if (runner.val < x) {
leftCurr.next = runner;
leftCurr = leftCurr.next;
} else {
rightCurr.next = runner;
rightCurr = rightCurr.next;
}
runner = runner.next;
}
// cut off ListNode after rightCurr to avoid cylic
rightCurr.next = null;
leftCurr.next = rightDummy.next;
return leftDummy.next;
}
}
copy
源码分析
- 异常处理
- 引入左右两个dummy节点及left和right左右尾指针
- 遍历原链表
- 处理右链表,置
right->next
为空(否则如果不为尾节点则会报错,处理链表时 以 null 为判断),将右链表的头部链接到左链表尾指针的next,返回左链表的头部
复杂度分析
遍历链表一次,时间复杂度近似为 , 使用了两个 dummy 节点及中间变量,空间复杂度近似为 .