-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Unique Paths II
- tags: [DP_Matrix]
Question
- lintcode: (115) Unique Paths II
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids.
How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
Note
m and n will be at most 100.
Example
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
copy
题解
在上题的基础上加了obstacal这么一个限制条件,那么也就意味着凡是遇到障碍点,其路径数马上变为0,需要注意的是初始化环节和上题有较大不同。首先来看看错误的初始化实现。
C++ initialization error
class Solution {
public:
/**
* @param obstacleGrid: A list of lists of integers
* @return: An integer
*/
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
if(obstacleGrid.empty() || obstacleGrid[0].empty()) {
return 0;
}
const int M = obstacleGrid.size();
const int N = obstacleGrid[0].size();
vector<vector<int> > ret(M, vector<int>(N, 0));
for (int i = 0; i != M; ++i) {
if (0 == obstacleGrid[i][0]) {
ret[i][0] = 1;
}
}
for (int i = 0; i != N; ++i) {
if (0 == obstacleGrid[0][i]) {
ret[0][i] = 1;
}
}
for (int i = 1; i != M; ++i) {
for (int j = 1; j != N; ++j) {
if (obstacleGrid[i][j]) {
ret[i][j] = 0;
} else {
ret[i][j] = ret[i -1][j] + ret[i][j - 1];
}
}
}
return ret[M - 1][N - 1];
}
};
copy
源码分析
错误之处在于初始化第0行和第0列时,未考虑到若第0行/列有一个坐标出现障碍物,则当前行/列后的元素路径数均为0!
C++
class Solution {
public:
/**
* @param obstacleGrid: A list of lists of integers
* @return: An integer
*/
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
if(obstacleGrid.empty() || obstacleGrid[0].empty()) {
return 0;
}
const int M = obstacleGrid.size();
const int N = obstacleGrid[0].size();
vector<vector<int> > ret(M, vector<int>(N, 0));
for (int i = 0; i != M; ++i) {
if (obstacleGrid[i][0]) {
break;
} else {
ret[i][0] = 1;
}
}
for (int i = 0; i != N; ++i) {
if (obstacleGrid[0][i]) {
break;
} else {
ret[0][i] = 1;
}
}
for (int i = 1; i != M; ++i) {
for (int j = 1; j != N; ++j) {
if (obstacleGrid[i][j]) {
ret[i][j] = 0;
} else {
ret[i][j] = ret[i -1][j] + ret[i][j - 1];
}
}
}
return ret[M - 1][N - 1];
}
};
copy
源码分析
- 异常处理
- 初始化二维矩阵(全0阵),尤其注意遇到障碍物时应
break
跳出当前循环 - 递推路径数
- 返回
ret[M - 1][N - 1]