-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Implement strStr
Tags: Two Pointers, String, Easy
Question
- leetcode: Implement strStr()
- lintcode: strstr
Problem Statement
Implement strStr().
Returns the index of the first occurrence of needle in haystack, or -1 if needle is not part of haystack.
题解
对于字符串查找问题,可使用双重 for 循环解决,效率更高的则为 KMP 算法。双重 for 循环的使用较有讲究,因为这里需要考虑目标字符串比源字符串短的可能。对目标字符串的循环肯定是必要的,所以可以优化的地方就在于如何访问源字符串了。简单直观的解法是利用源字符串的长度作为 for 循环的截止索引,这种方法需要处理源字符串中剩余长度不足以匹配目标字符串的情况,而更为高效的方案则为仅遍历源字符串中有可能和目标字符串匹配的部分索引。
Python
class Solution:
def strStr(self, source, target):
if source is None or target is None:
return -1
for i in range(len(source) - len(target) + 1):
for j in range(len(target)):
if source[i + j] != target[j]:
break
else: # no break
return i
return -1
copy
C
int strStr(char* haystack, char* needle) {
if (haystack == NULL || needle == NULL) return -1;
const int len_h = strlen(haystack);
const int len_n = strlen(needle);
for (int i = 0; i < len_h - len_n + 1; i++) {
int j = 0;
for (; j < len_n; j++) {
if (haystack[i+j] != needle[j]) {
break;
}
}
if (j == len_n) return i;
}
return -1;
}
copy
C++
class Solution {
public:
int strStr(string haystack, string needle) {
if (haystack.empty() && needle.empty()) return 0;
if (haystack.empty()) return -1;
if (haystack.size() < needle.size()) return -1;
for (string::size_type i = 0; i < haystack.size() - needle.size() + 1; i++) {
string::size_type j = 0;
for (; j < needle.size(); j++) {
if (haystack[i + j] != needle[j]) break;
}
if (j == needle.size()) return i;
}
return -1;
}
};
copy
Java
public class Solution {
public int strStr(String haystack, String needle) {
if (haystack == null && needle == null) return 0;
if (haystack == null) return -1;
if (needle == null) return 0;
for (int i = 0; i < haystack.length() - needle.length() + 1; i++) {
int j = 0;
for (; j < needle.length(); j++) {
if (haystack.charAt(i+j) != needle.charAt(j)) break;
}
if (j == needle.length()) return i;
}
return -1;
}
}
copy
源码分析
- 边界检查:
haystack(source)
和needle(target)
有可能是空串。 - 边界检查之下标溢出:注意变量
i
的循环判断条件,如果用的是i < source.length()
则在后面的source.charAt(i + j)
时有可能溢出。 - 代码风格:
- 运算符
==
两边应加空格 - 变量名不要起
s1``s2
这类,要有意义,如target``source
- Java 代码的大括号一般在同一行右边,C++ 代码的大括号一般另起一行
- int i, j;`声明前有一行空格,是好的代码风格
- 运算符
- 是否在for的条件中声明
i
,j
,这个视情况而定,如果需要在循环外再使用时,则须在外部初始化,否则没有这个必要。
需要注意的是有些题目要求并不是返回索引,而是返回字符串,此时还需要调用相应语言的substring
方法。Python3 中用range
替换了xrange
,Python2 中使用xrange
效率略高一些。
另外需要注意的是 Python 代码中的else
接的是for
而不是if
, 其含义为no break
, 属于比较 Pythonic 的用法,有兴趣的可以参考 4. More Control Flow Tools 的 4.4 节和 if statement - Why does python use 'else' after for and while loops?
复杂度分析
双重 for 循环,时间复杂度最坏情况下为 .