-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Permutation Index
Question
- lintcode: (197) Permutation Index
Problem Statement
Given a permutation which contains no repeated number, find its index in all the permutations of these numbers, which are ordered in lexicographical order. The index begins at 1.
Example
Given [1,2,4], return 1.
题解
做过 next permutation 系列题的话自然能想到不断迭代直至最后一个,最后返回计数器的值即可。这种方法理论上自然是可行的,但是最坏情况下时间复杂度为 , 显然是不能接受的。由于这道题只是列出某给定 permutation 的相对顺序(index), 故我们可从 permutation 的特点出发进行分析。
以序列1, 2, 4
为例,其不同的排列共有 3!=6
种,以排列[2, 4, 1]
为例,若将1置于排列的第一位,后面的排列则有 2!=2
种。将2置于排列的第一位,由于[2, 4, 1]
的第二位4在1, 2, 4中为第3大数,故第二位可置1或者2,那么相应的排列共有 2 * 1! = 2
种,最后一位1为最小的数,故比其小的排列为0。综上,可参考我们常用的十进制和二进制的转换,对于[2, 4, 1]
, 可总结出其排列的index
为2! * (2 - 1) + 1! * (3 - 1) + 0! * (1 - 1) + 1
.
以上分析看似正确无误,实则有个关键的漏洞,在排定第一个数2后,第二位数只可为1或者4,而无法为2, 故在计算最终的 index 时需要动态计算某个数的相对大小。按照从低位到高位进行计算,我们可通过两重循环得出到某个索引处值的相对大小。
Python
class Solution:
# @param {int[]} A an integer array
# @return {long} a long integer
def permutationIndex(self, A):
if A is None or len(A) == 0:
return 0
index = 1
factor = 1
for i in xrange(len(A) - 1, -1, -1):
rank = 0
for j in xrange(i + 1, len(A)):
if A[i] > A[j]:
rank += 1
index += rank * factor
factor *= (len(A) - i)
return index
copy
C++
class Solution {
public:
/**
* @param A an integer array
* @return a long integer
*/
long long permutationIndex(vector<int>& A) {
if (A.empty()) return 0;
long long index = 1;
long long factor = 1;
for (int i = A.size() - 1; i >= 0; --i) {
int rank = 0;
for (int j = i + 1; j < A.size(); ++j) {
if (A[i] > A[j]) ++rank;
}
index += rank * factor;
factor *= (A.size() - i);
}
return index;
}
};
copy
Java
public class Solution {
/**
* @param A an integer array
* @return a long integer
*/
public long permutationIndex(int[] A) {
if (A == null || A.length == 0) return 0L;
long index = 1, fact = 1;
for (int i = A.length - 1; i >= 0; i--) {
// get rank in every iteration
int rank = 0;
for (int j = i + 1; j < A.length; j++) {
if (A[i] > A[j]) rank++;
}
index += rank * fact;
fact *= (A.length - i);
}
return index;
}
}
copy
源码分析
注意 index 和 factor 的初始值,rank 的值每次计算时都需要重新置零,index 先自增,factorial 后自乘求阶乘。
复杂度分析
双重 for 循环,时间复杂度为 . 使用了部分额外空间,空间复杂度 .