-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Continuous Subarray Sum II
Question
Problem Statement
Given an integer array, find a continuous rotate subarray where the sum of numbers is the biggest. Your code should return the index of the first number and the index of the last number. (If their are duplicate answer, return anyone. The answer can be rorate array or non- rorate array)
Example
Give [3, 1, -100, -3, 4]
, return [4,1]
.
题解
题 Continuous Subarray Sum 的 follow up, 这道题 AC 率极低,真是磨人的小妖精。在上题的基础上容易想到可以将first
和last
分四种情况讨论,然后再逆向求大于0的最大和即可,但是这种想法忽略了一种情况——旋转后的最大值可能由两段子数组和构成,而这种情况如果用上题的解法则会被忽略。
所以这道题的正确解法不是分first
和last
四种情况讨论,而是利用旋转数组的特性。第一种情况,无论怎么拼接原数组中的数组和都无法大于最大的单一数组和;第二种情况则相反。所以现在问题的关键则转化为怎么求第二种情况。首先可以明确一点,最终得到的数组和索引必须连续(含首尾相接)。也就是说情况二一旦出现,则我们可以将原数组中挖空一小段,现在问题来了:到底要挖掉多少元素?
我们的目标是使得挖掉后的元素值最大。由于分段求解不容易(被隔开),但是被挖掉的元素索引是挨着的!正难则反!由于数组的总和是一定的,那么我们只要求得被挖掉部分元素的最小值即可得两边子数组的最大值!最后判断两个最大值孰大孰小就可以了。
Java
public class Solution {
/**
* @param A an integer array
* @return A list of integers includes the index of the first number and the index of the last number
*/
public ArrayList<Integer> continuousSubarraySumII(int[] A) {
ArrayList<Integer> result = new ArrayList<Integer>();
if (A == null || A.length == 0) return result;
// maximal subarray sum
ArrayList<Integer> sub1 = subSum(A, 1);
// minimal subarray sum
ArrayList<Integer> sub2 = subSum(A, -1);
int first = 0, last = 0;
if (sub1.get(3) - sub2.get(2) > sub1.get(2)) {
last = sub2.get(0) - 1;
first = sub2.get(1) + 1;
} else {
first = sub1.get(0);
last = sub1.get(1);
}
// corner case(all elements are negtive)
if (last == -1 && first == A.length) {
first = sub1.get(0);
last = sub1.get(1);
}
result.add(first);
result.add(last);
return result;
}
private ArrayList<Integer> subSum(int[] A, int sign) {
ArrayList<Integer> result = new ArrayList<Integer>();
// find the max/min subarray sum from [0...A.length]
int sum = 0, minSum = 0, maxSub = Integer.MIN_VALUE;
if (sign == -1) maxSub = Integer.MAX_VALUE;
int first = 0, last = 0;
int first2 = 0; // candidate for first
for (int i = 0; i < A.length; i++) {
if (sign * minSum > sign * sum) {
minSum = sum;
first2 = i;
}
sum += A[i];
if (sign * (sum - minSum) > sign * maxSub) {
maxSub = sum - minSum;
last = i;
// update first if valid
if (first2 <= last) first = first2;
}
}
result.add(first);
result.add(last);
result.add(maxSub);
result.add(sum);
return result;
}
}
copy
源码分析
由于既需要求最大子数组和,也需要求最小子数组和,我们将这一部分写成一私有方法,并加入sign
控制符号。如果两段子数组和大于一段子数组和时,新的first
和last
正好相反。且在数组全为负时需要排除,直接使用单一子数组和最大的情况。
复杂度分析
遍历两次数组,时间复杂度 , 使用了部分额外 List, 空间复杂度 .