-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Unique Binary Search Trees
Question
- leetcode: Unique Binary Search Trees | LeetCode OJ
- lintcode: (163) Unique Binary Search Trees
Given n, how many structurally unique BSTs (binary search trees)
that store values 1...n?
Example
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
copy
题解1 - 两重循环
挺有意思的一道题,与数据结构和动态规划都有点关系。这两天在骑车路上和睡前都一直在想,始终未能找到非常明朗的突破口,直到看到这么一句话——『以i为根节点的树,其左子树由[0, i-1]构成, 其右子树由[i+1, n]构成。』这不就是 BST 的定义嘛!灵活运用下就能找到递推关系了。
容易想到这道题的动态规划状态为 count[n], count[n] 表示到正整数 i 为止的二叉搜索树个数。容易得到 count[1] = 1, 根节点为1,count[2] = 2, 根节点可为1或者2。那么 count[3] 的根节点自然可为1,2,3. 如果以1为根节点,那么根据 BST 的定义,2和3只可能位于根节点1的右边;如果以2为根节点,则1位于左子树,3位于右子树;如果以3为根节点,则1和2必位于3的左子树。
抽象一下,如果以 i 作为根节点,由基本的排列组合知识可知,其唯一 BST 个数为左子树的 BST 个数乘上右子树的 BST 个数。故对于 i 来说,其左子树由[0, i - 1]构成,唯一的 BST 个数为 count[i - 1], 右子树由[i + 1, n] 构成,其唯一的 BST 个数没有左子树直观,但是也有迹可循。对于两组有序数列「1, 2, 3] 和 [4, 5, 6]来说,这两个有序数列分别组成的 BST 个数必然是一样的,因为 BST 的个数只与有序序列的大小有关,而与具体值没有关系。所以右子树的 BST 个数为 count[n - i],于是乎就得到了如下递推关系:
网上有很多用 count[3] 的例子来得到递推关系,恕本人愚笨,在没有从 BST 的定义和有序序列个数与 BST 关系分析的基础上,我是不敢轻易说就能得到如上状态转移关系的。
Python
class Solution:
# @paramn n: An integer
# @return: An integer
def numTrees(self, n):
if n < 0:
return -1
count = [0] * (n + 1)
count[0] = 1
for i in xrange(1, n + 1):
for j in xrange(i):
count[i] += count[j] * count[i - j - 1]
return count[n]
copy
C++
class Solution {
public:
/**
* @paramn n: An integer
* @return: An integer
*/
int numTrees(int n) {
if (n < 0) {
return -1;
}
vector<int> count(n + 1);
count[0] = 1;
for (int i = 1; i != n + 1; ++i) {
for (int j = 0; j != i; ++j) {
count[i] += count[j] * count[i - j - 1];
}
}
return count[n];
}
};
copy
Java
public class Solution {
/**
* @paramn n: An integer
* @return: An integer
*/
public int numTrees(int n) {
if (n < 0) {
return -1;
}
int[] count = new int[n + 1];
count[0] = 1;
for (int i = 1; i < n + 1; ++i) {
for (int j = 0; j < i; ++j) {
count[i] += count[j] * count[i - j - 1];
}
}
return count[n];
}
}
copy
源码分析
- 对 n 小于0特殊处理。
- 初始化大小为 n + 1 的数组,初始值为0,但对 count[0] 赋值为1.
- 两重 for 循环递推求得 count[i] 的值。
- 返回 count[n] 的值。
由于需要处理空节点的子树,故初始化 count[0] 为1便于乘法处理。其他值必须初始化为0,因为涉及到累加操作。
复杂度分析
一维数组大小为 n + 1, 空间复杂度为 . 两重 for 循环等差数列求和累计约 , 故时间复杂度为 . 此题为 Catalan number 的一种,除了平方时间复杂度的解法外还存在 的解法,欲练此功,先戳 Wikipedia 的链接。