-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Linked List - 链表
链表是线性表的一种。线性表是最基本、最简单、也是最常用的一种数据结构。线性表中数据元素之间的关系是一对一的关系,即除了第一个和最后一个数据元素之外,其它数据元素都是首尾相接的。线性表有两种存储方式,一种是顺序存储结构,另一种是链式存储结构。我们常用的数组就是一种典型的顺序存储结构。
相反,链式存储结构就是两个相邻的元素在内存中可能不是相邻的,每一个元素都有一个指针域,指针域一般是存储着到下一个元素的指针。这种存储方式的优点是定点插入和定点删除的时间复杂度为 O(1),不会浪费太多内存,添加元素的时候才会申请内存,删除元素会释放内存。缺点是访问的时间复杂度最坏为 O(n)。
顺序表的特性是随机读取,也就是访问一个元素的时间复杂度是O(1),链式表的特性是插入和删除的时间复杂度为O(1)。
链表就是链式存储的线性表。根据指针域的不同,链表分为单向链表、双向链表、循环链表等等。
编程实现
Python
class ListNode:
def __init__(self, val):
self.val = val
self.next = None
copy
C++
struct ListNode {
int val;
ListNode *next;
ListNode(int val,ListNode *next=NULL):val(val),next(next){}
};
copy
Java
public class ListNode {
public int val;
public ListNode next;
public ListNode(int val) {
this.val = val;
this.next = null;
}
}
copy
链表的基本操作
反转链表
单向链表
链表的基本形式是:1 -> 2 -> 3 -> null
,反转需要变为 3 -> 2 -> 1 -> null
。这里要注意:
- 访问某个节点 curt.next 时,要检验 curt 是否为 null。
- 要把反转后的最后一个节点(即反转前的第一个节点)指向 null。
Python
class ListNode:
def __init__(self, val):
self.val = val
self.next = None
# in python next is a reversed word
def reverse(self, head):
prev = None
while head:
temp = head.next
head.next = prev
prev = head
head = temp
return prev
copy
C++
ListNode * ReverseList(ListNode *head){
ListNode *pre=NULL,*tmp;
while(head){
tmp=head->next;
head->next=pre;
pre=head;
head=tmp;
}
return pre;
}
copy
Java
class ListNode {
int val;
ListNode next;
ListNode(int val) {
this.val = val;
}
}
// iterative method
public ListNode reverse(ListNode head) {
ListNode prev = null;
while (head != null) {
ListNode next = head.next;
head.next = prev;
prev = head;
head = next;
}
return prev;
}
// recursive method
public ListNode reverse(ListNode head) {
if (head == null || head.next == null) {
return head;
}
ListNode next = head.next;
ListNode newHead = reverse(next);
next.next = head;
head.next = null;
return newHead;
}
copy
双向链表
和单向链表的区别在于:双向链表的反转核心在于next
和prev
域的交换,还需要注意的是当前节点和上一个节点的递推。
Python
class DListNode:
def __init__(self, val):
self.val = val
self.prev = self.next = None
def reverse(self, head):
curt = None
while head:
curt = head
head = curt.next
curt.next = curt.prev
curt.prev = head
return curt
copy
Java
class DListNode {
int val;
DListNode prev, next;
DListNode(int val) {
this.val = val;
this.prev = this.next = null;
}
}
public DListNode reverse(DListNode head) {
DListNode curr = null;
while (head != null) {
curr = head;
head = curr.next;
curr.next = curr.prev;
curr.prev = head;
}
return curr;
}
copy
删除链表中的某个节点
删除链表中的某个节点一定需要知道这个点的前继节点,所以需要一直有指针指向前继节点。还有一种删除是伪删除,是指复制一个和要删除节点值一样的节点,然后删除,这样就不必知道其真正的前继节点了。
然后只需要把 prev -> next = prev -> next -> next
即可。但是由于链表表头可能在这个过程中产生变化,导致我们需要一些特别的技巧去处理这种情况。就是下面提到的 Dummy Node。
链表指针的鲁棒性
综合上面讨论的两种基本操作,链表操作时的鲁棒性问题主要包含两个情况:
- 当访问链表中某个节点 curt.next 时,一定要先判断 curt 是否为 null。
- 全部操作结束后,判断是否有环;若有环,则置其中一端为 null。
Dummy Node
Dummy node 是链表问题中一个重要的技巧,中文翻译叫“哑节点”或者“假人头结点”。
Dummy node 是一个虚拟节点,也可以认为是标杆节点。Dummy node 就是在链表表头 head 前加一个节点指向 head,即 dummy -> head。Dummy node 的使用多针对单链表没有前向指针的问题,保证链表的 head 不会在删除操作中丢失。除此之外,还有一种用法比较少见,就是使用 dummy node 来进行head的删除操作,比如 Remove Duplicates From Sorted List II,一般的方法current = current.next 是无法删除 head 元素的,所以这个时候如果有一个dummy node在head的前面。
所以,当链表的 head 有可能变化(被修改或者被删除)时,使用 dummy node 可以很好的简化代码,最终返回 dummy.next 即新的链表。
快慢指针
快慢指针也是一个可以用于很多问题的技巧。所谓快慢指针中的快慢指的是指针向前移动的步长,每次移动的步长较大即为快,步长较小即为慢,常用的快慢指针一般是在单链表中让快指针每次向前移动2,慢指针则每次向前移动1。快慢两个指针都从链表头开始遍历,于是快指针到达链表末尾的时候慢指针刚好到达中间位置,于是可以得到中间元素的值。快慢指针在链表相关问题中主要有两个应用:
- 快速找出未知长度单链表的中间节点
设置两个指针
*fast
、*slow
都指向单链表的头节点,其中*fast
的移动速度是*slow
的2倍,当*fast
指向末尾节点的时候,slow
正好就在中间了。 - 判断单链表是否有环
利用快慢指针的原理,同样设置两个指针
*fast
、*slow
都指向单链表的头节点,其中*fast
的移动速度是*slow
的2倍。如果*fast = NULL
,说明该单链表 以NULL
结尾,不是循环链表;如果*fast = *slow
,则快指针追上慢指针,说明该链表是循环链表。
Python
class NodeCircle:
def __init__(self, val):
self.val = val
self.next = None
def has_circle(self, head):
slow = head
fast = head
while (slow and fast):
fast = fast.next
slow = slow.next
if fast:
fast = fast.next
if fast == slow:
break
if fast and slow and (fast == slow):
return True
else:
return False
copy
class List
{
public:
bool iscircle(ListNode* head)
{
if (!head || !head->next) return false;
ListNode *low = head, *fast = high;
while(fast && fast->next)
{
low = low->next;
fast = fast->next->next;
if (low == fast) return true;
}
return false;
}
};
copy
class List
{
public:
ListNode* InLisNodet(ListNode *head)
{
if (!head || !head->next) return head;
ListNode *low = head, *fast = head;
while(fast && fast->next)
{
low = low->next;
fast = fast->next->next;
}
return low;
}
};
copy