-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Maximum Subarray II
Question
- lintcode: (42) Maximum Subarray II
Given an array of integers,
find two non-overlapping subarrays which have the largest sum.
The number in each subarray should be contiguous.
Return the largest sum.
Example
For given [1, 3, -1, 2, -1, 2],
the two subarrays are [1, 3] and [2, -1, 2] or [1, 3, -1, 2] and [2],
they both have the largest sum 7.
Note
The subarray should contain at least one number
Challenge
Can you do it in time complexity O(n) ?
copy
题解
严格来讲这道题这道题也可以不用动规来做,这里还是采用经典的动规解法。Maximum Subarray 中要求的是数组中最大子数组和,这里是求不相重叠的两个子数组和的和最大值,做过买卖股票系列的题的话这道题就非常容易了,既然我们已经求出了单一子数组的最大和,那么我们使用隔板法将数组一分为二,分别求这两段的最大子数组和,求相加后的最大值即为最终结果。隔板前半部分的最大子数组和很容易求得,但是后半部分难道需要将索引从0开始依次计算吗?NO!!! 我们可以采用从后往前的方式进行遍历,这样时间复杂度就大大降低了。
Java
public class Solution {
/**
* @param nums: A list of integers
* @return: An integer denotes the sum of max two non-overlapping subarrays
*/
public int maxTwoSubArrays(ArrayList<Integer> nums) {
// -1 is not proper for illegal input
if (nums == null || nums.isEmpty()) return -1;
int size = nums.size();
// get max sub array forward
int[] maxSubArrayF = new int[size];
forwardTraversal(nums, maxSubArrayF);
// get max sub array backward
int[] maxSubArrayB = new int[size];
backwardTraversal(nums, maxSubArrayB);
// get maximum subarray by iteration
int maxTwoSub = Integer.MIN_VALUE;
for (int i = 0; i < size - 1; i++) {
// non-overlapping
maxTwoSub = Math.max(maxTwoSub, maxSubArrayF[i] + maxSubArrayB[i + 1]);
}
return maxTwoSub;
}
private void forwardTraversal(List<Integer> nums, int[] maxSubArray) {
int sum = 0, minSum = 0, maxSub = Integer.MIN_VALUE;
int size = nums.size();
for (int i = 0; i < size; i++) {
minSum = Math.min(minSum, sum);
sum += nums.get(i);
maxSub = Math.max(maxSub, sum - minSum);
maxSubArray[i] = maxSub;
}
}
private void backwardTraversal(List<Integer> nums, int[] maxSubArray) {
int sum = 0, minSum = 0, maxSub = Integer.MIN_VALUE;
int size = nums.size();
for (int i = size - 1; i >= 0; i--) {
minSum = Math.min(minSum, sum);
sum += nums.get(i);
maxSub = Math.max(maxSub, sum - minSum);
maxSubArray[i] = maxSub;
}
}
}
copy
源码分析
前向搜索和逆向搜索我们使用私有方法实现,可读性更高。注意是求非重叠子数组和,故求maxTwoSub
时i 的范围为0, size - 2
, 前向数组索引为 i, 后向索引为 i + 1.
复杂度分析
前向和后向搜索求得最大子数组和,时间复杂度 , 空间复杂度 . 遍历子数组和的数组求最终两个子数组和的最大值,时间复杂度 . 故总的时间复杂度为 , 空间复杂度 .