-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Merge Intervals
Question
- leetcode: Merge Intervals | LeetCode OJ
- lintcode: (156) Merge Intervals
Problem Statement
Given a collection of intervals, merge all overlapping intervals.
Example
Given intervals => merged intervals:
[ [
[1, 3], [1, 6],
[2, 6], => [8, 10],
[8, 10], [15, 18]
[15, 18] ]
]
copy
Challenge
O(n log n) time and O(1) extra space.
题解1 - 排序后
初次接触这道题可能会先对 interval 排序,随后考虑相邻两个 interval 的 end 和 start 是否交叉,若交叉则合并之。
Java
/**
* Definition of Interval:
* public class Interval {
* int start, end;
* Interval(int start, int end) {
* this.start = start;
* this.end = end;
* }
*/
class Solution {
/**
* @param intervals: Sorted interval list.
* @return: A new sorted interval list.
*/
public List<Interval> merge(List<Interval> intervals) {
if (intervals == null || intervals.isEmpty()) return intervals;
List<Interval> result = new ArrayList<Interval>();
// sort with Comparator
Collections.sort(intervals, new IntervalComparator());
Interval prev = intervals.get(0);
for (Interval interval : intervals) {
if (prev.end < interval.start) {
result.add(prev);
prev = interval;
} else {
prev.start = Math.min(prev.start, interval.start);
prev.end = Math.max(prev.end, interval.end);
}
}
result.add(prev);
return result;
}
private class IntervalComparator implements Comparator<Interval> {
public int compare(Interval a, Interval b) {
return a.start - b.start;
}
}
}
copy
源码分析
这里因为需要比较 interval 的 start, 所以需要自己实现 Comparator 接口并覆盖 compare 方法。这里取 prev 为前一个 interval。最后不要忘记加上 prev.
复杂度分析
排序 , 遍历 , 所以总的时间复杂度为 . 空间复杂度 .
题解2 - 插入排序
除了首先对 intervals 排序外,还可以使用类似插入排序的方法,插入的方法在题 Insert Interval 中已详述。这里将 result 作为 intervals 传进去即可,新插入的 interval 为 intervals 遍历得到的结果。
Java
/**
* Definition of Interval:
* public class Interval {
* int start, end;
* Interval(int start, int end) {
* this.start = start;
* this.end = end;
* }
*/
class Solution {
/**
* @param intervals: Sorted interval list.
* @return: A new sorted interval list.
*/
public List<Interval> merge(List<Interval> intervals) {
if (intervals == null || intervals.isEmpty()) return intervals;
List<Interval> result = new ArrayList<Interval>();
for (Interval interval : intervals) {
result = insert(result, interval);
}
return result;
}
private List<Interval> insert(List<Interval> intervals, Interval newInterval) {
List<Interval> result = new ArrayList<Interval>();
int insertPos = 0;
for (Interval interval : intervals) {
if (newInterval.end < interval.start) {
result.add(interval);
} else if (newInterval.start > interval.end) {
result.add(interval);
insertPos++;
} else {
newInterval.start = Math.min(newInterval.start, interval.start);
newInterval.end = Math.max(newInterval.end, interval.end);
}
}
result.add(insertPos, newInterval);
return result;
}
}
copy
源码分析
关键在 insert 的理解,result = insert(result, interval);
作为迭代生成新的 result.
复杂度分析
每次添加新的 interval 都是线性时间复杂度,故总的时间复杂度为 . 空间复杂度为 .
Reference
- Merge Intervals 参考程序 Java/C++/Python
- Soulmachine 的 leetcode 题解