-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Route Between Two Nodes in Graph
Question
- lintcode: (176) Route Between Two Nodes in Graph
- Find if there is a path between two vertices in a directed graph - GeeksforGeeks
Problem Statement
Given a directed graph, design an algorithm to find out whether there is a route between two nodes.
Example
Given graph:
A----->B----->C
\ |
\ |
\ |
\ v
->D----->E
copy
for s = B
and t = E
, return true
for s = D
and t = C
, return false
题解1 - DFS
检测图中两点是否通路,图搜索的简单问题,DFS 或者 BFS 均可,注意检查是否有环即可。这里使用哈希表记录节点是否被处理较为方便。深搜时以起点出发,递归处理其邻居节点,需要注意的是处理邻居节点的循环时不是直接 return, 而只在找到路径为真时才返回 true, 否则会过早返回 false 而忽略后续可能满足条件的路径。
Java
/**
* Definition for Directed graph.
* class DirectedGraphNode {
* int label;
* ArrayList<DirectedGraphNode> neighbors;
* DirectedGraphNode(int x) {
* label = x;
* neighbors = new ArrayList<DirectedGraphNode>();
* }
* }
*/
public class Solution {
/**
* @param graph: A list of Directed graph node
* @param s: the starting Directed graph node
* @param t: the terminal Directed graph node
* @return: a boolean value
*/
public boolean hasRoute(ArrayList<DirectedGraphNode> graph,
DirectedGraphNode s, DirectedGraphNode t) {
Set<DirectedGraphNode> visited = new HashSet<DirectedGraphNode>();
return dfs(graph, s, t, visited);
}
public boolean dfs(ArrayList<DirectedGraphNode> graph,
DirectedGraphNode s, DirectedGraphNode t,
Set<DirectedGraphNode> visited) {
if (s == t) {
return true;
} else {
// corner cases
if (s == null || t == null) return false;
// flag visited node, avoid cylic
visited.add(s);
// compare unvisited neighbor nodes recursively
if (s.neighbors.size() > 0) {
for (DirectedGraphNode node : s.neighbors) {
if (visited.contains(node)) continue;
if (dfs(graph, node, t, visited)) return true;
}
}
}
return false;
}
}
copy
源码分析
根据构造函数的实现,Java 中判断是否有邻居节点时使用.size
,而不是null
. 注意深搜前检测是否被处理过。行
if (dfs(graph, node, t, visited)) return true;
copy
中注意不是直接 return, 只在为 true 时返回。
复杂度分析
遍历所有点及边,时间复杂度为 .
题解2 - BFS
除了深搜处理邻居节点,我们也可以采用 BFS 结合队列处理,优点是不会爆栈,缺点是空间复杂度稍高和实现复杂点。
Java
/**
* Definition for Directed graph.
* class DirectedGraphNode {
* int label;
* ArrayList<DirectedGraphNode> neighbors;
* DirectedGraphNode(int x) {
* label = x;
* neighbors = new ArrayList<DirectedGraphNode>();
* }
* }
*/
public class Solution {
/**
* @param graph: A list of Directed graph node
* @param s: the starting Directed graph node
* @param t: the terminal Directed graph node
* @return: a boolean value
*/
public boolean hasRoute(ArrayList<DirectedGraphNode> graph,
DirectedGraphNode s, DirectedGraphNode t) {
if (graph == null || s == null || t == null) return false;
Queue<DirectedGraphNode> q = new LinkedList<DirectedGraphNode>();
Set<DirectedGraphNode> visited = new HashSet<DirectedGraphNode>();
q.offer(s);
while (!q.isEmpty()) {
int qLen = q.size();
for (int i = 0; i < qLen; i++) {
DirectedGraphNode node = q.poll();
visited.add(node);
if (node == t) return true;
// push neighbors into queue
if (node.neighbors.size() > 0) {
for (DirectedGraphNode n : node.neighbors) {
// avoid cylic
if (visited.contains(n)) continue;
q.offer(n);
}
}
}
}
return false;
}
}
copy
源码分析
同题解一。
复杂度分析
时间复杂度同题解一,也是 , 空间复杂度最坏情况下为两层多叉树,为 .