-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Find the Connected Component in the Undirected Graph
Question
Problem Statement
Find the number connected component in the undirected graph. Each node in the graph contains a label and a list of its neighbors. (a connected component (or just component) of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph.)
Example
Given graph:
A------B C
\ | |
\ | |
\ | |
\ | |
D E
copy
Return {A,B,D}, {C,E}
. Since there are two connected component which is
{A,B,D}, {C,E}
题解1 - DFS
深搜加哈希表(因为有环,必须记录节点是否被访问过)
Java
/**
* Definition for Undirected graph.
* class UndirectedGraphNode {
* int label;
* ArrayList<UndirectedGraphNode> neighbors;
* UndirectedGraphNode(int x) { label = x; neighbors = new ArrayList<UndirectedGraphNode>(); }
* }
*/
public class Solution {
/**
* @param nodes a array of Undirected graph node
* @return a connected set of a Undirected graph
*/
public List<List<Integer>> connectedSet(ArrayList<UndirectedGraphNode> nodes) {
if (nodes == null || nodes.size() == 0) return null;
List<List<Integer>> result = new ArrayList<List<Integer>>();
Set<UndirectedGraphNode> visited = new HashSet<UndirectedGraphNode>();
for (UndirectedGraphNode node : nodes) {
if (visited.contains(node)) continue;
List<Integer> temp = new ArrayList<Integer>();
dfs(node, visited, temp);
Collections.sort(temp);
result.add(temp);
}
return result;
}
private void dfs(UndirectedGraphNode node,
Set<UndirectedGraphNode> visited,
List<Integer> result) {
// add node into result
result.add(node.label);
visited.add(node);
// node is not connected, exclude by for iteration
// if (node.neighbors.size() == 0 ) return;
for (UndirectedGraphNode neighbor : node.neighbors) {
if (visited.contains(neighbor)) continue;
dfs(neighbor, visited, result);
}
}
}
copy
源码分析
注意题目的输出要求,需要为 Integer 和有序。添加 node 至 result 和 visited 时放一起,且只在 dfs 入口,避免漏解和重解。
复杂度分析
遍历所有节点和边一次,时间复杂度 , 记录节点是否被访问,空间复杂度 .
题解2 - BFS
深搜容易爆栈,采用 BFS 较为安全。BFS 中记录已经访问的节点在入队前判断,可有效防止不重不漏。
Java
/**
* Definition for Undirected graph.
* class UndirectedGraphNode {
* int label;
* ArrayList<UndirectedGraphNode> neighbors;
* UndirectedGraphNode(int x) { label = x; neighbors = new ArrayList<UndirectedGraphNode>(); }
* }
*/
public class Solution {
/**
* @param nodes a array of Undirected graph node
* @return a connected set of a Undirected graph
*/
public List<List<Integer>> connectedSet(ArrayList<UndirectedGraphNode> nodes) {
if (nodes == null || nodes.size() == 0) return null;
List<List<Integer>> result = new ArrayList<List<Integer>>();
// log visited node before push into queue
Set<UndirectedGraphNode> visited = new HashSet<UndirectedGraphNode>();
for (UndirectedGraphNode node : nodes) {
if (visited.contains(node)) continue;
List<Integer> row = bfs(node, visited);
result.add(row);
}
return result;
}
private List<Integer> bfs(UndirectedGraphNode node,
Set<UndirectedGraphNode> visited) {
List<Integer> row = new ArrayList<Integer>();
Queue<UndirectedGraphNode> q = new LinkedList<UndirectedGraphNode>();
q.offer(node);
visited.add(node);
while (!q.isEmpty()) {
UndirectedGraphNode qNode = q.poll();
row.add(qNode.label);
for (UndirectedGraphNode neighbor : qNode.neighbors) {
if (visited.contains(neighbor)) continue;
q.offer(neighbor);
visited.add(neighbor);
}
}
Collections.sort(row);
return row;
}
}
copy
源码分析
略
复杂度分析
同题解一。