-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Prime
素数:恰好有两个约数的整数,一个是1,另一个则是它自己,比如整数3和5就是素数。素数的基本算法有素性测试、埃氏筛法和整数分解。
素性测试
如果d
是n
的约数,则易知 , 因此 n/d
也是n
的约数,且这两个约数中的较小者 . 因此我们只需要对前 个数进行处理。
埃氏筛法
素性测试针对的是单个整数,如果需要枚举整数n
以内的素数就需要埃氏筛法了。核心思想是枚举从小到大的素数并将素数的整数倍依次从原整数数组中删除,余下的即为全部素数。
区间筛法
求区间[a, b)
内有多少素数?
埃氏筛法得到的是[1, n)
内的素数,求区间素数时不太容易直接求解,我们采取以退为进的思路先用埃氏筛法求得[1, b)
内的素数,然后截取为[a, b)
即可。
Implementation
Java
import java.util.*;
public class Prime {
// test if n is prime
public static boolean isPrime(int n) {
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) return false;
}
return n != 1; // 1 is not prime
}
// enumerate all the divisor for n
public static List<Integer> getDivisor(int n) {
List<Integer> result = new ArrayList<Integer>();
for (int i = 1; i * i <= n; i++) {
if (n % i == 0) {
result.add(i);
// i * i <= n ==> i <= n / i
if (i != n / i) result.add(n / i);
}
}
Collections.sort(result);
return result;
}
// 12 = 2 * 2 * 3, the number of prime factor, small to big
public static Map<Integer, Integer> getPrimeFactor(int n) {
Map<Integer, Integer> result = new HashMap<Integer, Integer>();
for (int i = 2; i * i <= n; i++) {
// if i is a factor of n, repeatedly divide it out
while (n % i == 0) {
if (result.containsKey(i)) {
result.put(i, result.get(i) + 1);
} else {
result.put(i, 1);
}
n = n / i;
}
}
// if n is not 1 at last
if (n != 1) result.put(n, 1);
return result;
}
// sieve all the prime factor less equal than n
public static List<Integer> sieve(int n) {
List<Integer> prime = new ArrayList<Integer>();
// flag if i is prime
boolean[] isPrime = new boolean[n + 1];
Arrays.fill(isPrime, true);
isPrime[0] = false;
isPrime[1] = false;
for (int i = 2; i <= n; i++) {
if (isPrime[i]) {
prime.add(i);
for (int j = 2 * i; j <= n; j += i) {
isPrime[j] = false;
}
}
}
return prime;
}
// sieve between [a, b)
public static List<Integer> sieveSegment(int a, int b) {
List<Integer> prime = new ArrayList<Integer>();
boolean[] isPrime = new boolean[b];
Arrays.fill(isPrime, true);
isPrime[0] = false;
isPrime[1] = false;
for (int i = 2; i < b; i++) {
if (isPrime(i)) {
for (int j = 2 * i; j < b; j += i) isPrime[j] = false;
if (i >= a) prime.add(i);
}
}
return prime;
}
public static void main(String[] args) {
if (args.length == 1) {
int n = Integer.parseInt(args[0]);
if (isPrime(n)) {
System.out.println("Integer " + n + " is prime.");
} else {
System.out.println("Integer " + n + " is not prime.");
}
System.out.println();
List<Integer> divisor = getDivisor(n);
System.out.print("Divisor of integer " + n + ":");
for (int d : divisor) System.out.print(" " + d);
System.out.println();
System.out.println();
Map<Integer, Integer> primeFactor = getPrimeFactor(n);
System.out.println("Prime factor of integer " + n + ":");
for (Map.Entry<Integer, Integer> entry : primeFactor.entrySet()) {
System.out.println("prime: " + entry.getKey() + ", times: " + entry.getValue());
}
System.out.print("Sieve prime of integer " + n + ":");
List<Integer> sievePrime = sieve(n);
for (int i : sievePrime) System.out.print(" " + i);
System.out.println();
} else if (args.length == 2) {
int a = Integer.parseInt(args[0]);
int b = Integer.parseInt(args[1]);
List<Integer> primeSegment = sieveSegment(a, b);
System.out.println("Prime of integer " + a + " to " + b + ":");
for (int i : primeSegment) System.out.print(" " + i);
System.out.println();
}
}
}
copy